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ABSTRACT 
 

Buruli ulcer, a disease caused by infection with Mycobacterium ulcerans, is one of the most neglected but treatable tropical diseases. The 
causative organism is from the family of bacteria which causes tuberculosis and leprosy but knowledge gaps exist on the exact mode of 
transmission.  The aim of this paper is to examine the link between the Buruli ulcer morbidity and Soil Arsenic concentration in the Amansie Wes 
t District of Ghana using  kriging  method.  This  paper  provides  the  application of  kriging  to   the  spatial  interpolation  of  local  disease  
rates on the district boundary and soil map, resulting in continuous maps of disease rate estimate. It again provides the application of kriging to 
arsenic sample data in Amansie West District as a covariates variable. The spatial analysis was confined to settlements located within 60 
kilometers from the Amansie West District to avoid underestimating the risk of the disease incidence. Semivariogram models revealed a range of 
autocorrelation of 1.9 km for the Buruli ulcer disease and 17.9 km for arsenic risk. There are large patches in both southern and northeastern part 
of the kriged map indicating that all the soil types are susceptible to BU disease. However, the entire area has high level of arsenic concentration 
than recommended level by World Health Organization. The geographically weighted correlation between arsenic and Buruli ulcer estimated was 
0.9 and below.   The approach presented in this paper enables researchers to incorporate the pattern of spatial dependence of incidence rates into 
the mapping of risk values and the quantification of the associated uncertainty. 
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INTRODUCTION 
 
Buruli ulcer (BU) which is caused by Mycobacterium ulcerans 
has become one of the most rapidly emerging tropical disease 
in West Africa in recent decades (Stienstra, 2001). BU has 
emerged as an increasingly vital cause of human morbidity 
around the world, partly due to environmental change Amofah 
et al. (1993). The disease originated from the district of 
Uganda, where the first large numbers of cases were reported 
in the late 1960s and early 1970s Asiedu et al. (1998). Buruli 
ulcer incidence is highest among developing West African 
nations (WHO 2001), with cases in some countries exceeding 
those of tuberculosis and leprosy (Amofah et al., 1993, 2002). 
Up to 16% of villages are affected in Cote d’Ivoire (Marston 
et al., 1995; WHO 2001), and Benin has recorded 4000 cases 
since 1989 (Lagarrigue et al., 2000). In West Africa, nearly 
25% of people infected are left permanently disabled (Johnson 
et al., 2005). There is also evidence of vast under-reporting of 
the disease.  Ghana is the second most endemic country for 
buruli ulcer after Cote d’Ivoire globally, (WHO, 2012).  
Buruli Ulcer was first brought to public attention in Ghana in 
1993 when severe cases were reported from the Amansie West 
district of Ashanti Region in August (MOH, 2004). 
Specifically the most affected town is Tontokorom, although 
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earlier cases  have been  reported from the Densu and  Afram 
plains,  (Baylay 1971) and  (Van der werf et al., 1989.  The 
overall national prevalence rate of active Buruli Ulcer is 20.7 
per 100,000 of the population but as high as 150.8 per 100,000 
(Ministry of Health, Ashanti Region, 2004). The worse 
affected regions are Ashanti, Central, Brong Aharfo, Greater 
Accra and Eastern. Although there is a lot of literature on the 
possible causes of Buruli ulcer (BU), no one is sure where the 
bacterium lives in the environment and how the 
mycobacterium enters the human body therefore, the 
arguments have been purely speculative. majority of the  
epidemiological data and some hypothesis have associated the 
outbreak and emergence of the disease with an aquatic 
environment (Marsollier et al., 2002; Portaels et al., 1999).  
 
Most investigators have implicated insects, airborne, trauma 
and human to human as possible modes of transmission. Foci 
of the disease appear to develop after some form of 
environmental disturbance such as flooding or the formation 
of new dams or water storages, sand winning, where 
excavation have left behind large sheets of stagnant water 
Aiga et al. (2004) . Veitch et al. (1997) reporting a large 
outbreak of the disease on Philips Island, Australia associated 
the source of infection to an irrigation which lay in the midst 
of the cluster of cases. Number of cases reported from the 
community reduced after the irrigation site was modified and 
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limited from the public. Scot et al. (2004) noted that cases of 
Buruli ulcer are associated with tropical wetlands of west and 
central Africa ,and cases have increased rapidly in these areas 
since the 1980’s, particularly after irrigation and dam 
construction. Apart from associating aquatic environment with 
BU infection, it has also been observed that high levels of 
Arsenic (As) concentrations prevail in such environment. 
According to (Duker et al., 2004)  arsenic may play a vital 
role in the spatial distribution of BU. Areas where BU is a 
serious health threat, concentration of As in surface and 
ground water has been higher than average. Coincidentally, in 
Ghana, the Amansie West District, which accounts for most of 
the BU cases happens to have the highest levels of As, 
possibly released into rivers and lakes and ground water by 
intensive gold mining activities ( Aidoo et al., 2007). Human 
activities in the Amansie West District have elevated arsenic 
contamination in the environment (Bell, 1998). High levels of 
arsenic in drinking water have been detected in the water 
bodies with concentrations frequently exceeding the World 
Health Organization level of  (MCL) of 10 μg/L (Smedley et 
al., 2002).  In a separate study in an arsenic enriched 
environment, Sarkodie et al. (1997) alsos found that the peak 
period in which subsistence crops and fern contained the 
highest concentration of both species of arsenic (As3+, As5+) 
was the beginning of the dry season.  
 
Hence, arsenic accumulates in soil, contaminates both surface 
and groundwater is taken up by the community (Lloyd-Smith 
and Wickens, 2000). Arsenic occurs naturally in groundwater 
from dissolution of arsenic-bearing aquifers, with 
concentrations typically ranging from <1−1000 μg/L. Elevated 
levels of arsenic are cause for concern because it is associated 
with a number of adverse health outcomes, including several 
types of cancer, vascular diseases, dermatological ailments, 
diabetes, respiratory diseases, cognitive decline, and infant 
mortality (Chen et al., 1995). This paper is therefore aimed at 
examining the spatial relationship between soil arsenic 
concentration distribution and the distribution of Buruli ulcer 
in the Amansie West district of Ghana, using Poisson Kriging 
method.  Kriging is a group of geostatistical techniques to 
interpolate the value of a random field (e.g., the elevation, z, 
of the landscape as a function of the geographic location) at an 
unobserved location from observations of its value at nearby 
locations. The theory behind interpolation and extrapolation 
by kriging was developed by the French mathematician 
Georges Matheron based on the Master's thesis of Danie G. 
Krige, the pioneering plotter of distance-weighted average 
gold grades at the Witwatersrand reef complex in South Africa 
(Webster et al. 1994).   
 
Kriging belongs to the family of linear least squares estimation 
algorithms.  As illustrated in Figure 1, the aim of kriging is to 
estimate the value of an unknown real-valued function, f , at 

a point, *x , given the values of the function at some other 
points, 1,...., nx x  . A kriging estimator is said to be linear 

because the predicted value   *ˆ ( )f x  is a linear combination 
that may be written as 
 

* *

1
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The weights   *( )i x   are solutions of a system of linear 
equations which is obtained by assuming that  f    is a 
sample-path of a random process,  ( )F x    and that the error 
of prediction 
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is to be minimized in some sense. For instance, the so-called 
simple kriging assumption is that the mean and the covariance 
of  ( )F x   is known and then, the kriging predictor is the one 
that minimizes the variance of the prediction error 
(Mohammad et al., 2006). Although kriging was developed 
originally for applications in geostatistics, it is a general 
method of statistical interpolation that can be applied within 
any discipline to sampled data from random fields that satisfy 
the appropriate mathematical assumptions. To date kriging has 
been used in a variety of disciplines, including public health. 
Kriging as a geostatistical technique has a lot of advantages: It 
is an exact interpolator (that is if the control point coincides 
with the grid mode), relative index of the reliability of 
estimation in different regions, good indicator of data 
geometry, small nugget (or sll) gives a smaller kriging 
variance, minimizes the mean square error and a robust 
technique (i.e small changes in kriging parameters equals 
small changes in the results) (Gandhimathi et al., 2012). 
 
METHODOLOGY 
 
The Amansie West District falls within latitudes 6º 35 and 6º 
51 North and Longitudes 1º 40 and 2º 05. It is located in the 
south-western part of Ashanti Region in the forest zone of 
Ghana. It shares boundaries with the Amansie East District in 
the west, Atwima Mponua District in the east, Atwima 
Nwabiagya District in the north and Amansie Central in the 
South. The District covers an area of about 1,364 sq. km. and 
forms about 5.4 percent of the total land area of the Ashanti 
Region (AWDP, 2005). The district lies entirely in the 
rainforest belt. It exhibits most semi-deciduous characteristics. 
The district is very rich in forest resources, such as timber, 
herbs of medicinal value and fuel wood. It also abounds in 
different species of tropical hardwood, notably Odum, 
Mahogany and Sapale. There are four main forest reserves in 
the district. These are: Oda River Forest Reserve, Apamprama 
Forest Reserve, Gyeni River Forest Reserve and Jimira Forest 
Reserve. The dominant soil type in the district is the ochrosols 
soils that are suitable for a number of crops such as plantain, 
cocyam, cassava, maize, legumes, oil palm, cocoa, coffee, 
citrus and pear.  The district covers an area of 136,400 square 
kilometers. The year 2000 population census put the estimated 
population of the district at 108,273 with a population density 
of 62.8 persons per square kilometer. The district can be 
classified as predominantly rural. It has about 310 settlements 
fairly distributed within the district. Of the 310 settlements, 
only 19 have populations above 1000 and shows a large 
proportion constituting small settlement of farming 
communities. 
 
Incidence of BU for each settlement over the period 1999-
2011 was obtained from the Amansie West District Health 
Directorate and was entered as attributes for each settlement. 
The demographic data of the area was obtained from the 2000  
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Ghana Population and Housing Census Data. Spatial data were 
obtained by exacting the coordinates from the digitized 
boundary map of the Amansie West District using the 
topographic map obtained from the Survey and Mapping 
Division Accra, Ghana. Population from 1999-2011 was 
extrapolated based on the 1984 and 2000 population growth 
rates computed using data from Ghana Statistical Service 
Accra, Ghana.  Buruli ulcer incidence per (100) people of the 
population was then computed for each settlement. Data were 
collected from Forty (40) Wells made of 14 sample points of 
Leptisols of average arsenic level 178 μg/L, Fluvosols 12 
sample points of arsenic average of 628.3 μg/L and Acrisols of 
16 sample of average arsenic 469.81 μg/L. Grids of nodes of 
interval 100 meters were generated on the soil map to predict 
the arsenic distribution on the study. Webster et al. (1994) 
looked at the effect of geological formation and land use on 
topsoil concentrations and found much smaller concentrations 
for most metals on the Argovian formation.  The soil map with 
sampled arsenic data will thus acted as our source of areal 
information. This map is made up of 3 polygons that belong to 
one of the three soil formations.  In the present application, no 
independent calibration of the soil maps existed and, for the 
purpose of illustration, the mean arsenic concentration within 
each formation was simply computed as the weighted average 
of all samples collected on that formation. The weight is the 
area of influence of each sample (that is, Thiessen polygon) in 
order to account for data clustering. In a situation where a soil 
map is available, areal data would simply be identified with 
concentrations recorded on representative profiles for each 
mapping unit (Kery et al., 2004). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Disease mapping 
 
The data used in this study is Buruli ulcer data, and the BU 
count data is discrete. To model these spatial data, the 
standard kriging algorithm like simple kriging is not right for 
the discrete distribution. It is essential to take into account the 
binomial or Poisson nature of the count data. The 
methodology for estimating a spatial Poisson distribution was 
introduced by Kaiser et al. (1997). They developed the spatial 
“auto-models” based on the Poisson distribution to be used to 
incorporate spatial dependencies among the variables. 
Monestiez et al. (2006) developed Poisson kriging to model 
spatially heterogeneous observation effort. The approach 
applied by Monestiez is similar to binomial co-kriging 
proposed by Oliver et al. (1998) except that count data 
followed a Poisson distribution. Poisson kriging was then 
generalised by Goovaerts (2005) to analyse cancer data under 
the assumption that all geographic units are the same in size. 
Spatial epidemiological studies have proven useful for 
understanding the geographical distribution and landscape-
drivers of many diseases, including Puumala virus, Lyme 
borreliosis disease, malaria, and Human African 
Trypanosomiasis, among others (Linard, et al., 2007). Disease 
mapping demands the interpolation of BU rate data to the 
nodes of a grid covering the study area.  
 

Spatial Prediction of Arsenic levels 
 
The arsenic concentrations levels in the soil were modeled by 
simple kriging with local mean (SKLm). This was based on a 
study by Goovaerts et al. (2010).  He used ancillary data to 

 
 

Figure 1. Map of the Amansie West District 
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improve prediction of soil and crop attributes in agriculture 
using one of the following approaches: simple kriging, 
cokriging and Kriging with an External Drift.  In this research, 
we used simple kriging with local mean (SKLm) by modeling 
the local average arsenic concentration levels (Z) on each soil 
type. The kriging estimates were then expressed as linear 
combination of the neighbouring primary Z- data and the local 
mean estimated at the various (n) geographical locations and 
the specific location u being predicted: 

1
( ) ( )[ ( ) *( )] *( )

n

SKLmZ Z m m 


     


          Equation 1 

= ( ) ( ) *( )r m      

Where are referred to as residuals. The 
kriging weights were achieved by solving the following 
simple kriging system: 
 

    
Where CR(h) is the covariance function of the residuals 
random function. R (u), not that of the variable Z itself. 
 
Geostatistical analysis of Buruli ulcer rates 
 
We took settlements with BU at Amansie West District to be 
N and BU incident at each given settlement was expressed as 
d(uα). Given that population at each geographical position (xα, 
yα) is n (u α). We therefore, computed morbidity rate as z (u α) 
= d (u α)/n (u α).      
 
Poisson Kriging 
 
Poisson kriging was developed by Pierre Goovaerts and 
successfully applied to cancer data in USA (Goovaerts et al., 
2005). We employed this approach based on the 
characteristics of BU count data. The 71 settlements used for 
this analysis can be modeled as the combination of the risk of 
contracting BU infection and a random (error term) because of 

spatially changing population size  
 

 
 

The estimated number  of BU cases at a geographical 

position has a fixed function R . This follows a Poisson 
distribution with one parameter (Number of BU cases) as 

product of the population size  by the risk R . 
According to Goovaerts (2005) the following relations are 
met: 
 

 
 

 
 

The probability of getting infected with BU disease at any 
given location  is computed as linear combination of K 
neighbouring data (Ali et al., 2006) 
 

                        Equation 6 
 

Where   is the rate observed at location . The kriging 
weights are obtained by finding solution to the following 
system of (K+1) linear equations: 

 
 

Where  and 0 otherwise, is the population size at 
is the population- weighted mean of the set of N 

rates computed as :  
      

      1

1
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n z
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     Equation 8 

 

The quantity  is error variance term that denotes the 
variability as a result of population size and is calculated 
directly under the Poisson model for the counts (Goovaerts., 
2005). The addition of this term zero distance paved way to 
assign smaller kriging weights to rates that were calculated 
from smaller populations and deemed less reliable. The term 

 is Lagrange parameter that results from the reduction 
of the estimation variance subject to the unbiasedness 
constraint on the estimator. In order to solve the kriging 
system (Equation 5), one requires to have a model of the 
spatial covariance of the unknown risk, , or equally its 

semivariogram = CR (0)-CR(h). The experimental 
variogram is computed using the following estimator 
developed by Monestiez et al., (2006).  
  

( )
2

( )
1

1

1 ( ) ( )ˆ ( ) [ ( ) ( )] *
( ) ( ) ( ) ( )2
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N h

R N h
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Equation 9 
 
Where N (h) is the number of pairs of settlements separated by 
vector h 
 

The different spatial increments are 
weighted by a function of their respective population sizes, 

 a term which is 
inversely proportional to their standard deviation. Preference 
was given to pair data with small standard deviations. A 

permissible model  was then fitted to the experimental 
semivariogram in order to obtain the semivariogram. In this 
work, the modeling was performed using the weighted least-
square regression.  
 
RESULTS AND DISCUSSIONS 
 
The residuals of arsenic concentration of 40 sample data were 
used to compute experimental semivriogram model     
(equation 3). This residual semivariogram was estimated 
based on 8 lag count of size 4000 metres, Figure 1. The spatial 
spread of arsenic concentration was modeled using equation 1. 
The soil map and the two main rivers were overlaid on the 
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arsenic concentration estimate. The arsenic levels were very 
high at the basin of the two main rivers. This is where artisanal 
mining activities are of ascendency. There was large spatial 
autocorrelation of 17975.34m in soil arsenic concentration in 
Amansie West District. The Spherical model which was fitted 
through the residual arsenic data has 0.122 MSS errors. The 
nugget variance which is the unexplained error in the data was 
5.144*10-6. Experimental risk semivariogram was computed 
using BU incidence rates from the 71 settlements of Amansie 
West District, using the population-weighted estimator 
(Equation 8). There were no observed differences between 
directional semivariograms, therefore, the spatial variability 
was considered isotropic and only the omnidirectional 
semivariograms is shown in Figure 3.1. The semivariogram 
for BU was estimated using 8 lags of a size 800 metres. We 
used weighted least-square regression to model the BU disease 
where the weights account for both the number of data pairs 
and the semivariogram value.  
 

 
 

A 
 

 
B 

 

Figure 3.1. Semivariogram model for Arsenic concentration (A) 
and Semivariogram  model for Buruli ulcer disease (B) 

 
Buruli ulcer semivariogram is a spherical model with practical 
range of 1946.06 metres. The arsenic estimate has large spatial 
autocorrelation than that of the BU disease spread in the same 
area. This large range of spatial autocorrelation in arsenic 
concentration model shows a better spatial structure which 
may be speculated to be related to exposure of arsenic through 
human activities such as mining, agriculture and 
constructional activities into water bodies used by the 
community.  This is supported by Duker et al., (2006) that the 
influence of arsenic on gold activities enhances the growth of 
the Mycobacterium and this may contribute to the spread of 
BU. The BU incidence estimate was overlaid on the soil map 
of the area to indicate spatial relation between the soil and the 

disease Figure 3.2. The boundary of the colour classes 
correspond to the deciles of the histogram of the risk 
estimates. The Buruli ulcer estimates created by the Poisson 
kriging (Figure 3.2) shows   a large area of high incidence in 
the western and eastern part of the study area, where the 
mining activities is intensive.  These regions have large 
patches of arsenic risk (Figure 3.2) and may relate to the BU 
disease. 
 

 
  A       
Figure 3.2. Maps of Arsenic concentration on District boundary 

created by Poisson Kriging 
 
Co-incidentally, these regions are drained by the two main 
rivers, Figure 3. The southern part has relatively higher risk of 
BU disease estimate and is underlain by Fluvosols which has 
the highest patches of arsenic level, Figure 3.3. This region 
has large patches of arsenic risk and may be related to BU 
disease. These areas are very close to the two main rivers in 
the study area where the artisanal mining activities are 
vigorously pursued. On the Leptisols and Acrisols soils, the 
arsenic risk levels are very low and this may partly account for 
the low level Buruli ulcer incidence in these areas.  

 
 

Figure 3.3. Map of soil with Arsenic concentration and the two 
main rivers of Amansie West District 

 
The study found that the major consideration for the location 
of settlements in the study area is based primarily on 
proximity to and availability of water for drinking and other 
domestic purposes. As a result, many settlements are located 
within the distance of about 150 m from drainage basins. This 
finding is supported by Duker et al. ( 2004) who concluded in 
their study in the Amansie West that siting of rural settlements 
in the study area is based primarily on proximity to and 
availability of water for drinking and other domestic purposes. 
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Consequently, many settlements are located within the 
optimum buffer distance of 100 m from drainage channels 
(Duker et al. 2004). The water which is abstracted from the 
drainage basin is enriched in arsenic. The perpetual ingestion 
of the arsenic-enriched water through drinking and cooking is 
likely to enhance the growth and development of the 
Mycobacterium, the disease causing organism.  In  a related  
 

 
 

Figure 3.4. arsenic enrich polluted river in the Amansie 
West District 

 
development,  Amofah et al. in 1993 studied 90 BU patients 
and found that 52 used surface water as the source of their 
drinking water. The result of the kriging analysis corroborates 
this observation as the research indicated that BU prevalence 
is highest where the inhabitants have ready access to domestic 
water supplies from arsenic-enriched surface drainage. Again, 
food crops that are grown on the plains may take up these high 
concentrations of arsenic and when consumed will make the 
individuals susceptible to several kinds of diseases including 
BU. 
 

Conclusions 
 
In Amansie West District, Poisson risk map has never been 
used to depict areas of high Buruli ulcer incidence and to help 
control this disease. In addition to BU incidence, arsenic risk 
level has been used as covariate variable to explain spatial 
relationship between BU disease and arsenic consumptions. 
Our risk map for Buruli ulcer and arsenic may be vital for 
identifying putative factors of increased disease risk and for 
assisting health officials take remedial actions.  The Simple 
Kriging with Local mean (SKLm) was also used to 
characterize the arsenic risk as a covariate variable to BU 
disease incidence.  This was based on the three main soil types 
in the area where sample were taken from each for analysis. 
There is a positive correlation between Arsenic concentration 
and BU disease incidence in most part of the study area. 
However, there are some places where correlation is negative 
indicating that BU may also be high but Arsenic may not be 
so. Poisson kriging was applied to Amansie West District BU 
incidence data as filter to produce more accurate spatial 
mapping because it takes population sizes into consideration.   
The BU disease is fast spreading through the boundaries 
especial Amansie Central and the other parts. Arsenic levels 
for the entire are is higher than the recommended WHO level. 
There is a need to check the movement of people and the 
activities they engage in. Further investigation looking into 

vegetation cover of the study area will help to identify high 
incidence risk of Buruli ulcer. 
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