

Available Online at http://www.journalajst.com

ASIAN JOURNAL OF SCIENCE AND TECHNOLOGY

Asian Journal of Science and Technology Vol. 5, Issue 11, pp.653-654, November, 2014

RESEARCH ARTICLE

THE PRODUCTION OF PURE NITRATES OF LANTHANUM, NEODYMIUM, EUROPIUM AND YTTERBIUM SOLUTIONS OF URANIUM IN KAZAKHSTAN

*Aibassov Yerkin, Kenzhaliev Bagdaulet, Suleimenov Esen, Aibassov Gizatulla and Abenov Bakhyt

Kazakh-British Technical University, Almaty 050000, Kazakhstan

ARTICLE INFO	ABSTRACT		
<i>Article History:</i> Received 18 th August, 2014	This paper presents the results of the search of complex processing of raw uranium as the development of the production of rare earth metals in Kazakhstan.		

Received 18 August, 2014 Received in revised form 01st September, 2014 Accepted 30th October, 2014 Published online 19th November, 2014

Key words:

Rare Earth Metals, Uranium Industry.

Copyright © 2014 Aibassov Yerkin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

When in-situ leaching uranium leach solutions are nearly always the rare earth metals. Actual problem is the development of cost-effective technologies for the extraction of rare earth metals from uranium solutions. Rare earth metals are expensive metals and are widely used in post-combustion catalysts transport emissions and obtaining superconductors. The aim of this work was to obtain pure nitrate, lanthanum, neodymium, europium and ytterbium from productive solutions uranium mine treatment of oxalic acid at a slightly basic solution.

Experimental

Acidic solutions productive uranium deposits (pH = 1,5-2,0) Kazakhstan treated NH4OH solution to increase pH = 6-7,5 and the white precipitate was analyzed by atomic absorption spectrograph.

RESULTS AND DISCUSSION

In physico-chemical laboratory uranium mine "Ak Dala" conducted laboratory tests to obtain pure nitrates of lanthanum, neodymium, europium and ytterbium from their oxides, previously isolated from a uranium mine productive

*Corresponding author: Aibassov Yerkin Kazakh-British Technical University, Almaty 050000, Kazakhstan solutions. Analyses were performed on lanthanide nitrates ISPspektrometetre. The results of the analysis of the pure nitrate, lanthanum, neodymium, ytterbium and europium are presented in Table 1.

As seen from Table 1, the laboratory tests showed that pure lanthanum nitrate, neodymium, europium and ytterbium may be obtained from uranium leach solutions. Thus, we first obtained and identified clean nitrates of lanthanum, neodymium, europium and ytterbium from their oxides, previously isolated from a uranium mine productive solutions "Ak Dala".

Conclusion

This paper presents the results of the search of complex processing of raw uranium as the development of the production of rare earth metals in Kazakhstan. In the future, research will continue on the selection of synthetic ionexchange resins for the effective adsorption of rare earth elements from uranium industry productive solutions.

Acknowledgments

The author would like to thank Lynn C. Francesconi (Hunter College CUNY), Ruben M. Savizky (Columbia University, New York), Peter C. Buns (Notre Dame University, Indians) and Chistopher L. Cahill (George Washington University) for discussion of the results.

Table 1. Chemical composition obtained nitrates lantonoidov

Element	Mass	Conc.	Counts (CPS)	Примечание
Yb(NO ₃) ₃				
Sc	45	6.200 ug/l	18,431.35	
Co	59	ISTD	2,535,915	
Y La	89 139	Element 1.100 ug/l	5,116.711 35,128.07	
Ce	140	5,500 ug/l	2,278.816	
Pr	141	370.0 ng/l	337,1585	
Nd	146	44.00 ng/l	34,012.16	
Sm	147	25.00 ug/l	7,759.345	
Eu Gd	153 157	6.700 ug/l 4.800 ug/l	20,245.48 3,349.040	
Tb	159	2.500 ug/l	1,335.864	
Dy	163	160.0 ng/l	480.0256	
Ho	165	230.0 ng/l	664.3246	
Er	166	79.00 ng/l	744.3395	
Tm Yb	169 172	250.0 ng/l 730.0 ng/l	6,620.259 269,547,100	
Lu	172	130.0 mg/l	147,757.7	
Bi	209	16.00 ug/l	8,895,674	
Eu(NO ₃) ₃		ISTD		
Sc	45	Element	19,283.16	
Co Y	59 89	6.200 ug/l	2,677,689	
La	139	ISTD	2,800.344 204,602.4	
Ce	140	Element	3,356.194	
Pr	141	560.0 ng/l	1,140.079	
Nd	146	30.00 ug/l	3,194.728	
Sm Eu	147 153	510.0 ng/l 140.0 ng/l	4,323.604 78,537,830	
Gd	155	2.300 ug/l	2,794.635	
Tb	159	3.500 ug/l	2,074.498	
Dy	163	17.00 mg/l	2,201.666	
Но	165	1.900 ug/l	45,000.92	
Er Tm	166 169	230.0 ng/l 990.0 ng/l	387.1608 43,743.02	
Yb	172	5.000 ug/l	55,195.27	
Lu	175	120.0 ng/l	3,924,939	
Bi	209	4.600 ug/l	9,674,100	
Nd(NO ₃) ₃	4.5	25.00 ug/l	17 (40.1(
Sc Co	45 59	400.0 ng/l ISTD	17,648.16 2,553,736	
Y	89	Element	26,913.46	
La	139		23,447.16	
Ce	140	5.900 ug/l	46,501.36	
Pr	141 146	ISTD	91,490.08 44,124,450	
Nd Sm	140	Element 5.700 ug/l	50,438.37	
Eu	153	3.700 ug/l	133,604.2	
Gd	157	7.500 ug/l	16,705.43	
Tb	159	11.00 ug/l	1,653,546	
Dy Но	163 165	33.00 mg/l 42.00 ug/l	124,103.7 47,899.90	
Er	166	42.00 ug/l 31.00 ug/l	582,924.3	
Tm	169	12.00 ug/l	1,181.515	
Yb	172	190.0 ug/l	29,698.68	
Lu D:	175	59.00 ug/l	792.9014	
Bi La(NO ₃) ₃	209	5.600 ug/l 200.0 ug/l	9,093,602	
Sc	45	130.0 ng/l	29,552.03	
Co	59	14.00 ug/l	2,888,645	
Y	89	86.00 ng/l	192.8641	
La Ce	139 140	ISTD Element	352,757,300 16,709.61	
Pr	140	Licinciit	5,172.462	
Nd	146	8.700 ug/l	1,973.049	
Sm	147	ISTD	188.5794	
Eu	153	Element	4,350.774	
Gd Tb	157 159	35.00 ng/l 48.00 mg/l	29,500.86 26,320.80	
Dy	163	2.400 ug/l	357.1608	
Ho	165	590.0 ng/l	44.28726	
Er	166	1.300 ug/l	2,517.437	
Tm Vh	169	140.0 ng/l	127.1476	
Yb Lu	172 175	890.0 ng/l 18.00 ug/l	13,577.95 1,040.072	
14	110	10.00 ug/1	1,010.072	

Bi	209	2.700 ug/l	10,533,550
		140.0 ng/l	
		5.100 ng/l	
		750.0 ng/l	
		12.00 ng/l	
		5.800 ug/l	
		99.00 ng/l	
		ISTD	
		Element	

REFERENCES

- Aibassov Yerkin Zhakenovich, Aibassova Saltanat Mamievna. New reaction involving the oxidative O-, Cphosphorylation of organic compounds by phosphine in presence of complexes Pt(IV) and Pt(II), oxidation of U(IV) to U(VI) used of catalyst "Muhamedzhan-1", "Gitel Publishing House, Inc.", New York, 2011, p. 62.
- Aibassov Yerkin Zhakenovich, Aibassova Saltanat Mamievna. New reaction of Arsine. Introduction to Organic Chemistry of Arsenic, Actinides, Lanthanides, Os¹⁸⁷ and Re, ", "Gitel Publishing House, Inc.", New York, 2011, p. 100.
- Aibassov Yerkin Zhakenovich, Aibassova Saltanat Mamievna. The new reactions in organometallic chemistry of arsenic, antimony and bismuth and uranium catalysts, "Infiniline" Publishing House, Inc.", Almaty, 2014, p. 230.
