

Available Online at http://www.journalajst.com

ASIAN JOURNAL OF SCIENCE AND TECHNOLOGY

Asian Journal of Science and Technology Vol. 07, Issue, 05, pp.2877-2879, May, 2016

RESEARCH ARTICLE

PERICARP OF MANGOSTEEN CONTROLS CLINICAL MICROBES

*Gladis Helen Hepsyba, S. and Muthukumar, S.

Department of Zoology Dr. Ambedkar govt. Arts College, Vyasarpadi, Chennai 39

ARTICLE INFO	ABSTRACT
Article History: Received 19 th February, 2016 Received in revised form 21 st March, 2016 Accented 17 th April 2016	In the present study anti microbial activity of Garcinia mangostana was examined by determining the minimal inhibitory concentration (MIC) using macro dilution broth technique. The pericarp extract powder of Garcinia mangostana at different concentrations were tested against Staphylococcus aureus, Staphylococcus albus, Micrococcus lutus. Garcinia mangostana Linn is used as a phytomedicine for the treatment of trauma. diahorrea and skin infections.

Key words:

Pericarp, Garcinia, Mangostana.

Copyright © 2016 Gladis Helen Hepsyba and Muthukumar. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

Published online 30th May, 2016

Nowadays attention has been paid to primitive medicinal plants and dietary factors to search for new substances with potentially effective anti-microbial activity. A large number of natural products have been evaluated as potential chemo preventive or therapeutic agents the present study was undertaken to study the anti microbial property of mangos teen pericarp. The pericarps of G. mangostana have been widely used as a traditional medicine for the treatment of diarrhea, skin infection and chronic wounds for many years (Mahabusarakam et al., 1987). Garcinia mangostana Linn. commonly known as "mangosteen", is a tropical evergreen tree and is an emerging category of novel functional foods "superfruits" presumed to have a sometimes called combination of appealing subjective characteristics, such as taste, fragrance and visual qualities, nutrient richness, antioxidant strength (Primchanien Moongkarndi 2004) and potential impact for lowering risk of human diseases (José Pedraza-Chaverri et al., 2008). Extract from its pericarp has been demonstrated the antimicrobial activity against a wide variety of microorganisms (Iinuma et al., 1996., Sundaram et al., 1983., Mahabusarakum et al., 1983., Mahabusarakam Suksamrarn 2003). The extracts from various parts 1986., contain varieties of secondary metabolites such as prenylated and oxygenated xanthones.

**Corresponding author: Gladis Helen Hepsyba, S.,* Department of Zoology Dr. Ambedkar govt. Arts College, Vyasarpadi, Chennai 39, India. Xanthones or xanthen-9H-one could be isolated from peel, whole fruit, bark, and leaves of mangos teen, Sakagami 2005). Several studies have shown that xanthones from mangosteen have remarkable biological activities such as antioxidant, antitumoral, anti-inflammatory, antiallergy, antibacterial, antifungal, and antiviral activities (Suksamrarn 2008; and Pedraza-Chaverri 2008) The subsurface chemistry of the mangosteen pericarp comprises an array of polyphenolic acids including xanthones and tannins that assure astringency to discourage infestation by insects, fungi, plant viruses, bacteria and animal predation while the fruit is immature. Color changes and softening of the pericarp are natural processes of ripening, which indicates that the fruit can be eaten and the seeds finish developing. Among the constituents of the pericarps, xanthones are biologically active phenols that naturally occur in a restricted group of plants Jung, et al (2006). The strong *in-vitro* antibacterial activity of xanthone derivatives against both methicillin-resistant and methicillinsensitive S. aureus suggested the compounds might find wide pharmaceutical use Iinuma et al 2006.

MATERIALS AND METHODS

The fruit of mangos teen is rated one of the most delectable of the tropics and pulp gives the fruit its reputation as one of the finest and most delicious of fruits. Good fruits may attain 6-7 cm in diameter and contain 5-7 seed surrounded by a white, sweet and succulent flesh [Burkill; Quisumbing]. The fruit is a rounded berry 5 to 7 centimeters in diameter, smooth, and dark purple. The rind is firm, spongy, thick, and full of yellow, resinous juice. (Fig1)

Table I.	Pericarp	extract on	to the	sterile disc
	I CI ICAI P	CALL ALL UI	to the	sterne uist

Volume	Concentration of extract
5µl	100µg
10 ul	200ug
15 µl	300µg
20 µl	400µg
25 µl	500µg

Table II. The inhibition zone after the incubation period

Strain	Concentration of extract				
	100 µg	200 µg	300 µg	400 µg	500 µg
Staphylococcus Aureus Staphylococcus Albus	12mm 8mm	15mm 10mm	16mm 15mm	18mm 17mm	22mm 20mm
Micrococci	8mm	9mm	10mm	11mm	14mm

Table III. Minimal inhibitory concentrations of s. aureus, s.albus and micrococci

Strain			Concentration	Concentration of extract			
	400µg / ml	200 µg / ml	100 µg / ml	50µg / ml	25µg / ml	12.5µg/ml	
S. aureus			Turbidity	Turbidity	Turbidity	Turbidity	
S. albus Micrococci					Turbiditv Turbidity	Turbiditv Turbidity	

Mangostin is obtained by boiling the rind in water, and tannin is removed by exhausting by boiling in alcohol and evaporating; resulting product is mangostin and resin; resin is precipitated by redissolving it in alcohol and water, and evaporating the water. It occurs in small yellow scales, tasteless neutral, insoluble in water, but readily soluble in alcohol and ether (Nadkarni and Nadkarni 1999). *G. mangostana* pericarp extract powder was obtained from Avasthagen Company, Thailand as a compliment and used for the present investigation. All other chemicals used were of analytical grade.

Antimicrobial activity

6 mg of the extract was mixed with 300 micro lit of DMSO so as to get a concentration of 20 micro gm in 1 micro lit of the suspension. 5ul, 10ul, 15ul, 20ul and 25ul volume of extract was loaded on to sterile discs corresponding to the concentrations. The herbal extract in different concentration was tested against Staphylococcus aureus, S. albus and Micrococci for antibacterial activity separately. After 24 hours incubation period the plates were observed and the inhibitionzone was recorded.

Minimal Inhibitory Concentration (MIC)

A serial 2-fold broth dilution method was performed to determine the MICs of herbal extracts against bacterial strains.

Stationary-phase cultures of all strains were prepared by inoculating fresh broth tubes and incubating at 37°C till 0.5 Mc Farlands standard was achieved. Serial 2-fold dilutions were prepared from extract stock solutions and 1.0 mL of each standardized bacterial suspension was added to an equal volume of each extract dilution. After incubation for 24 h \pm 1 h at 37 ° C, turbidity of the cultures was assessed visually by comparison to uninoculated controls. The MIC was defined as the lowest concentration of extract where bacterial growth was not detected. The MICs were determined from independent triplicate assays and were based on a serial 2-fold dilution starting with the initial concentration of 400 µg / ml. The MIC for S. aureus 200 µg / ml and S. albus and Micrococci is 50µg/ml.

RESULTS

Results obtained in our present study revealed the anti bacterial activity of Pericarp extract of Garcinia mangostana against Staphylococcus aureus, Staphylococcus albus, Micrococcus lutus (Table - II and Table - III). Microbial susceptibility assays using the disc diffusion method and the Minimal Inhibitory Concentration (MIC) were carried out for Staphylococcus aureus, Staphylococcus albus, Micrococcus lutus. When tested by the disc diffusion method, the Pericarp extract of Garcinia mangostana showed significant activity against Staphylococcus aureus, Micrococcus lutus and Staphylococcus albus at 22 mm, 14mm and 20mm respectively. The anti bacterial activity of the extract was especially notable. The Minimum Inhibitory Concentration (MIC) for Staphylococcus aureus, is 100 µg / ml while Micrococcus lutus and Staphylococcus albus at 25 µg/ml and 12.5 µg/ml respectively.

DISCUSSION

The extract from mangosteen pericarp has been known for its broad-spectrum antibacterial activity against several Grampositive and Gram- negative bacteria, especially those associated with skin infection, diarrhea, tuberculosis or acne

(Iinuma etal 1996., Sundaram et al 1983., Mahabusarakum et al., 1983., Mahabusarakum et al., 1986., Suksamrarn et al., 2003., Sakagami et al., 2005.). The active chemical components that are present in medicinal plants like Garcinia mangostana were responsible for its anti microbial activity (Priscila Ikeda Ushimaru et al., 20007). Among xanthone derivatives from mangosteen extract, a-mangostin has been known to exert the most potent antimicrobial activity (Chomnawang et al., 2005). Kitti Torrungruang et al. (2007) showed the antibacterial activity of mangosteen Pericarp extract against cariogenic Streptococcus mutans. Pedraza-Chaverri et al., 2008 indicates that the extract from mangosteen pericarp was effective against Staphylococcus aureus, Staphylococcus albus, Micrococcus lutus. The strong anti bacterial activity of the extract suggests that it is a good drug of choice for which might be helpful in preventing the progress of various diseases and it can be used in alternative system of medicine, Al-Massarani et al. (2013).

REFERENCES

- Al-Massarani, S.M., El Gamal, A.A., Al-Musayeib N.M *et al.*, 2013. "Phytochemical, antimicrobial and antiprotozoal evaluation of *Garcinia Mangostana* pericarp and αmangostin, its major xanthone derivative," *Molecules*, vol. 18, no. 9, pp. 10599–10608,
- Chomnawang MT, Surassmo S, Nukoolkarn VS, Gritsanapan W. 2005. Antimicrobial effects of Thai medicinal plants against acne-inducing bacteria. J Ethnopharmacol., 101: 330-3.
- Iinuma, M., Tosa, H., Tanaka, T., Asai, F., Kobayashi, Y., Shimano, R., et al. 1996. Antibacterial activity of xanthones from guttiferaeous plants against methicillinresistant *Staphylococcus aureus*. J Pharm Pharmacol., 48: 861 - 5.
- José Pedraza-Chaverri, Noemí Cárdenas-Rodríguez, Marisol Orozco-Ibarra and Jazmin M. Pérez-Rojas. Medicinal properties of mangosteen (*Garcinia mangostana*). Journal of food and toxicology. 2008; 3: 24-27.
- Jung, H.A., Su, B.N., Keller, W.J., Mehta, R.G., Kinghorn, A.D. 2006. Antioxidant xanthones from the pericarp of Garcinia mangostana (Mangosteen). J. Agric. Food Chem. 6, 2077-2082.
- Kitti Torrungruang, Piraporn Vichienroj and Suchada Chutimaworapan, 2007. Antibacterial activity of mangosteen pericarp extract against cariogenic *Streptococcus mutans. CU* Dent J. 30: 1-10.
- Mahabusarakam, W., Wiriyachitra, P. and Phongpaichit, S. 1986. Antimicrobial activities of chemical constituents from *Garcinia mangostana* Linn. *J Sci Soc Thailand.*, 12: 239-42.

- Mahabusarakam, W., Wiriyachitra, P. and Phongpaichit, S. 1986. Antimicrobial activities of chemical constituents from *Garcinia mangostana* Linn. *J Sci Soc Thailand*. 12: 239-42.
- Mahabusarakamm W., Wiriyachitra, P. and Taylor, W.C. 1987. Chemical constituents of *Garcinia mangostana*. Journal of Natural Products. 50: 474 - 478.
- Mahabusarakum, W., Phongpaichit, S., Jansakul, C. and Wiriyachitra, P. 1983. Screening of antibacterial activity of chemicals from *Garcinia mangostana*. Songklanakarin J Sci Technol. 5: 337-40.
- Mahabusarakum, W., Phongpaichit, S., Jansakul, C. and Wiriyachitra, P. 1983. Screening of antibacterial activity of chemicals from *Garcinia mangostana*. *Songklanakarin J Sci Technol*. 337-340.
- Nadkarni, K.M. and Nadkarni, A.K. 1999. Indian Materia Medica - with Ayurvedic, Unani-Tibbi, Siddha, Allopathic, Homeopathic, Naturopathic and Home remedies. Vol.1. Popular Prakashan Private Ltd., Bombay, India. ISBN No. 81-7154-142-9.
- Palakawong, C., Sophanodora, P., Pisuchpen, S. and Phongpaichit, S. 2010. International Food Research Journal. 17: 583-589.
- Pedraza-Chaverri, J., Cardenas-Rodriguez, N., Orozco- Ibarra, M. and Perez-Rojas, J. M. 2008. Medicinal properties of mangosteen (*Garcinia mangostana*). Food Chemistry and Toxicology. 46: 3227-3239.
- Peres, V., Nagem, T. J. and de Oliveira, F. F. 2000. Tetraoxygenated naturally occurring xanthones. Phytochemistry. 55: 683-710.
- Primchanien Moongkarndi, Nuttavut Kosema, Sineenart Kaslungka, Omboon Luanratana, Narongchai Pongpan and Neelobol Neungton, 2004. 90 (1):161-6.
- Priscila Ikeda Ushimaru1, Mariama Tomaz Nogueira da Silva, Luiz Claudio Di Stasi, Luciano Barbosa, Ary Fernandes Junior, 2007. Antibacterial activity of medicinal plant extracts Brazilian Journal of Microbiology. 38: 717-719.
- Sakagami, Y., Iinuma, M., Piyasena, K.G. Dharmaratne, H.R. 2005. Antibacterial activity of alpha-mangostin against vancomycin resistant Enterococci (VRE) and synergism with antibiotics. Phytomedicine. 12: 203-8.
- Suksamrarn, S., Suwannapoch, N., Phakhodee, W., Thanuhiranlert, J., Ratananukul, P., Chimnoi, N., et al. 2003. Antimycobacterial activity of prenylated xanthones from the fruits of *Garcinia mangostana*. *Chem Pharm Bull*, (Tokyo). 51: 857-9.
- Sundaram, B.M., Gopalakrishnan, C., Subramanian, S., Shankaranarayanan, D. and Kameswaran, L. 1983. Antimicrobial activities of *Garcinia mangostana*. Planta Med. 48: 59 - 60.
