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INTRODUCTION 
 

Ideal topology is a topological space endowed with an additional structure namely the ideal. Kuratowski (Kuratowski, 1996) 
introduced the concept of local functions in ideal topological spaces. The notion of Kuratowski operator plays a vital role in 
defining ideal topological space which has its application in localization theory in set topology by Vaidyanathaswamy 
(Vaidyanathaswamy, 1945). Ideals have been frequently used in the fields closely related to topology such as real analysis 
measure theory and lattice theory. In 1990, Jankovic and Hamlett (Jankovic and Hamlett, 1990; Jankovic and Hamlett, 1992) 
developed new topologies from old via ideals and introduced I-open sets with respect to an ideal I in 1992. The properties like 
continuity, separation axioms, connectedness, compactness and resolvability have been generalized using the concept of ideals in 
topological spaces. Erdal Ekici (Ekici and Noiri, 2008) et al introduced the notion of connectedness in ideal topological spaces. 
The purpose of this paper is to study the notion of ��-connectedness in ideal topological spaces and discuss their properties. 
 

Preliminaries 
 

Throughout this paper (X, τ) is a topological space on which no separation axioms are assumed unless explicitly stated. The 
notation (X, τ,�) will denote the topological space (X, τ) and an ideal I on X with no separation properties assumed. For A ⊆ (X, 
τ), Cl(A) and Int(A) respectively denote the closure and interior of A with respect to τ.  
 

Definition: 2.1(13) 
 

An ideal I on a topological space (X, τ) is a nonempty collection of subsets of X which satisfies  
the following properties: (1)  A ∈ I	 and B ⊆ A implies B  ∈ I. 

                                 (2)  A ∈ I and B ∈ I implies A∪ B	∈ I. 
 

An ideal topological space is a topological space (X, τ) with an ideal I  on X and is denoted by (X, τ,	I).  
 

Definition: 2.2(13) 
 

For a subset A of X, A  (I) = {x ∈ X: U ∩ A 	 	I for each neighbourhood U of x} is called the local function of A with respect to I 
and τ. We simply write A  instead of A  (I).  
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Definition: 2.3(13) 
 
It is well known that Cl*(A) = A ∪ A  defines a Kuratowski closure operator for τ (I) which finar than τ. 
 
Definition: 2.4(13) 
 
A basis β(I, τ) for τ (I) can be described as follows: β(I, τ) = {U  E: U ∈ τ and E	∈ 	I}. 
 
Definition: 2.5 
 
A subset A of an ideal topological space (X, τ, �) is  
 
(1) -perfect (9), if A =A 	 
(2)  - closed (10), if A ⊆	A 
(3)  *-dense (5), if Cl*(A) = X 
(4)  τ*-closed set (10), if A = Cl*(A) 
 
Definition: 2.6(16)  
 
A subset A of a space (X, τ) is said to be regular open set, if A = int(cl(A)). 
 
Definition: 2.7(18) 
 
Finite union of regular open sets in (X, τ) is π-open in (X, τ).The complement of π-open in (X, τ) is π-closed in (X, τ). 
 
Definition: 2.8(1) 
 
Given a space (X, τ,�), a set operator ()*π: P(X)	→ P(X) is called the π-local function of � with respect to τ is defined as follows: for 
A ⊆	X, (A)*π (�,τ) = {x∈ X/ Ux ∩ A  �, for	every	 Ux ∈ π N(x)}, where πN(x)} = {U ∈ πO(x) | x ∈U}. We write π-local function 
as A*π(�) or A*π or A*π(�, τ). 
 
Definition: 2.9(7) 
 
An ideal space (X, τ,	I) is said to be -hyperconnected, if A is -dense for every open subset A ≠ϕ of X. 
 
Definition: 2.10(8)  
 
An ideal space (X, τ,	I) is said to be -connected, if X cannot be written as the disjoint union of a nonempty open set and a 
nonempty -open set. 
 
Definition: 2.11(8) 
 
An ideal space (X, τ,	I) is said to be s-connected, if X cannot be written A is not the union of two - separated sets in (X, τ,	I). 
 
Definition: 2.12(8) 
 
Let X be an ideal space and x ∈ X. The union of all s-connected subsets of X containing x is called the s-component of X 
containing x. 
 
3. ��- Hyperconnected space 
 
Definition: 3.1 
 
A subset A of an ideal space (X, τ,	I) is said to be ��- dense, if cl*π (A) = X. 
 
Definition: 3.2 
 
An ideal topological space (X, τ,	I) is said to be ��-hyperconnected, if every pair of non-empty ��-open set intersects. 
 
Definition: 3.3 
 
An ideal space (X, τ,	I) is said to be ��-hyperconnected, if A is ��-dense for every non-empty open subset of X. 
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Example: 3.4 
 
Let (X, τ) be an indiscrete space with ideal � = { A ⊆ X | p  A} on X. Then  
 
Then A*π = X  if p∈ A 
                 = ϕ  if p  A 
 
Therefore Cl*π(A) = X  if p∈ A 
                              = A  if p  A 
 
Thus τ*π = {A ⊆ X: p  A}∪ {ϕ}. 
The only nonempty ��- open set is X and Cl*π(X) = X. 
Hence (X, τ,	I) is ��- hyperconnected. 
 
Example: 3.5 
 
X = {a, b, c} 
τ = {X, ϕ, {a}, {c}, {a, c}} 
I = {ϕ, {b}, {c}, {b, c}} 
τ*π = {X, ϕ, {a}, {c}, {a, b}, {a, c}} 
Now A= {a} is a nonempty ��-open set in X and Cl*π(A) = {a, b} ≠ X.  
Hence (X, τ,	I) is not ��- hyperconnected. 
 
Theorem: 3.6 
 
Every -hyperconnected space is ��-hyperconnected. 
 
Proof 
 
Given X is a -hyperconnected space. Since X is	 -hyperconnected, A is -dense and so Cl*(A) = X. Then every -open set in X 
intersects. Since τ* is finer than τ*π, every ��-open set intersects. Hence it is ��-hyperconnected. 
The converse of the above need not be true as shown in the following example: 
 
Example: 3.7 
 
X = {a, b, c, d} 
τ = {X, ϕ, {a}, {b}, {a, b}, {a, b, c}} 
I = {ϕ, {d}} 
τ* = {X, ϕ, {a}, {b}, {a, b}, {a, b, c}} 
τ*π = {X, ϕ, {b}, {a, b, c}} 
Here every nonempty ��-open set in X intersects but every nonempty -open set in X does not intersect. Therefore (X, τ,	I) is ��-
hyperconnected space but not -hyperconnected. 
 
Definition: 3.8 
 
Let f: (X, τ,	I)  (Y, �) be a function from an ideal topological space to a topological space, then f is said to be ��- continuous, if 
���(A) is ��-open in X for every open set A in Y. 
 
Theorem: 3.9 
 
Let (X, τ,	I) be an ideal topological space then the following are equivalent: 
1. X is ��-hyperconnected space 
2. Every ��- continuous function of X into a Hausdorff space is constant 
3. Every ��- continuous function f: X  {a,b} with discrete topology is constant. 

 
Proof 
 
(1)  (2) 

 
Suppose there exists a Hausdorff space Y and a ��- continuous function, such that f is not constant. Then there exists two distinct 
points x and y such that f(x) ≠ f(y). Since Y is Hausdorff space, there exists two disjoint open set G and H such that f(x) ∈ G, f(y) 
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∈ H and G ∩ H = ϕ. Since f is ��- continuous ���(G) and ���(H) are ��-open sets in X, then ���(G) ∩ ���(H) = ���(G	∩ H) = ϕ 
which is a contradiction. Hence f is a constant function. 
 
(2)  (3) : Straight forward 
(3)  (1) 
 
By hypothesis it is obvious that ���({a}) = X or ���({b}) = X. In both cases X is ��-hyperconnected space. 
 
Theorem: 3.10 
 
If X is a ��-hyperconnected space, f : X  Y is continuous and G(f) is closed in X × Y then f 
is constant. 
 
Proof 
 
Suppose that f is not constant, then there exists two points x and y such that f(x) ≠ f(y). Then we have (x, f(y)) ∈ (X × Y)  G(f). 
Since G(f) is closed, there exists open neighbourhood U and V of  x and f(y) such that (U × V) ∩ G(f) = ϕ which contradicts the 
hypothesis. Hence f is contant. 
 
Definition: 3.11 
 
A function f: (X, τ,	I)  (Y, �, J) said to be ��- irresolute, if ���(A) is ��-open in X for every ��-open set A in Y. 
 
Theorem: 3.12 
 
If X is a ��-hyperconnected space and f: (X, τ,	I)  (Y, �, J) is ��- irresolute surjection then Y ��-hyperconnected space. 
 
Proof 
 
Suppose Y is not ��-hyperconnected space, then there exists non-empty disjoint ��-open sets G and H of Y. Since f is ��- 
irresolute, ���(G) and ���(H) exists, ���(G) ∩ ���(H) = ���(G	∩ H) = ϕ which is a contradiction to the fact that X is  ��-
hyperconnected space. 
 
Definition: 3.13 
 
Let f: (X, τ,	I)  (Y, �, J) be a function from an ideal topological space to an ideal topological space such that f(I) ⊆ J, then f is 
said to be M*π- open if f(A) is ��-open in Y for every ��-open set A in X. 
 
Theorem: 3.14 
 
If Y is a ��-hyperconnected space and f: (X, τ,	I)  (Y, �, J) is an injection M*π-open map,  then X is ��-hyperconnected space. 
 
Proof 
 
Let U and V be any nonempty ��- open sets of X. Since f is M*π-open, f(U) and f(V) exists such that f(U) and f(V) are nonempty 
and  f(U) ∩ f(V) = ϕ which implies that U∩ V ≠ ϕ. Thus X is ��-hyperconnected space. 
 
Definition: 3.15 
 
An ideal topological space (X, τ,	I) is said to be ��- ultraconnected space, if every pair of ��- closed sets intersects. 
 
Remark: 3.16 
 
 ��- ultraconnectedness and ��- hyperconnectedness are independent of each other. 
 
Example: 3.17 
 
X = {a, b, c} 
τ = {X, ϕ, {a}} 
I = {ϕ, {b}, {c}, {b, c}} 
τ*π = {X, ϕ, {a}, {a, b}, {a, c}} 
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Here every non empty ��- open sets intersect. Therefore (X, τ,	I) is ��- hyperconnected space. But the complement of ��- open sets 
do not intersect. Hence it is not ��- ultraconnected space. 
 
Example: 3.18 
 
X = {a, b, c} 
τ = {X, ϕ, {a}, {b}, {a, b}} 
I = {ϕ, {c}} 
τ*π = {X, ϕ, {a}, {b}, {a, b}} 
Here (X, τ,	I) is not ��- hyperconnected space, but it is ��- ultraconnected space. 
 
4. ��- connected space 
 
Definition: 4.1 
 
An ideal space (X, τ,	I) is called ��- separation, if every pair of proper sets with A ∈	τ and B ∈ τ*π such that A ∩ B = ϕ and X = A 
∪ B. 
 
Definition: 4.2 
 
An ideal space (X, τ,	I) is called ��- connected if and only if there is no ��- separation on X. If (X, τ,	I) has ��- separation, then (X, 
τ,	I) is said to be ��- disconnected. 
 
Theorem: 4.4 
 
Every ��- hyperconnected space is ��- connected. 
 
Proof 
 
Suppose that (X, τ,	I) is ��- disconnected. Then there exists two nonempty proper sets A and B with A ∈	τ and B ∈ τ*π such that A 
∩ B = ϕ and X = A ∪ B which is contradiction. Hence        (X, τ,	I) is ��- connected. 
 
The converse of the above is not true as shown in the following example: 
 
Example: 4.5 
 
X = {a, b, c, d} 
τ = {X, ϕ, {a},{a, c}, {a, b, c}} 
I = {ϕ, {a}, {d}, {a, d}} 
Let A = {a} and B = {b, c} then A∪ B ≠ X. Therefore (X, τ,	I) is ��- connected but not ��- hyperconnected. 
 
Theorem: 4.6 
 
Let (X, τ,	I) be the ideal topological space, then every -connected space is ��- connected. 
 
Proof 
 
Suppose X is - connected space. Then X cannot be written as the disjoint union of a nonempty open set and a nonempty - open 
set. Since τ* is finer than τ*π, X cannot be as the disjoint union a nonempty open set and a nonempty ��- open set. Hence it is ��- 
connected. 
 
The converse of the above is not true as shown in the following example: 
 
Example: 4.7 
 
X = {a, b, c, d} 
τ = {X, ϕ, {a}, {a, b}, {a, b, c}} 
I = {ϕ, {a}} 
Let A = {a, b} and B = {c} then A∪ B ≠ X. Therefore (X, τ,	I) is ��-connected but not *-connected.  
 
Theorem: 4.8 
 
Let f : (X, τ,	I)  (Y, σ, J) be a surjective continuous function. If (X, τ,	I) is ��-connected then (Y, σ, J) is ��-connected.   
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Proof 
 
Suppose Y is ��-disconnected. Then there exists a ��- separation A, B of Y with A ∈ σ and B ∈ σ*π such that A ∩ B = ϕ and Y = A 
∪ B. Thus we have ���(A ∩ B) = ���(A) ∩ ���(B) = ϕ and ���(A ∪ B) = ���(A) ∪ ���(B) = ���(Y) = X. Thus ���(A) and 
���(B) are ��- separations of X which is contradiction to ��- connectedness of X. Hence (Y, σ, J) is ��-connected.   
 
Theorem: 4.9 
 
An ideal topological space X is ��- connected if and only if X and ϕ are the only subsets of X which are both ��- open and ��- 
closed. 
 
Theorem: 4.10 
 
Let f be a ��- irresolute function from a ��-connected space X into an ideal topological space Y. Then f(X) is ��-connected. 
 
Proof 
 
Suppose f(X) is not ��-connected then f(X) = G	∪ H = ϕ, where G and H are ��-open sets in f(X), since f is ��-irresolute ���(G) ∪ 
���(H) = X and ���(G) ∩ ���(H) = ϕ. But this is not possible when X is ��-connected. Hence ��-irresolute image of a ��-
connected space is ��-connected. 
 
Theorem: 4.11 
 
If ��-connected B ⊆ A, where A is non ��-connected then B lies completely in any one of the component. 
 
Proof 
 
Given B ⊆ A and A is ��-disconnected that is A = G ∪ H, where G and H are disjoint non empty open set and non empty ��-open 
set. Given B can be written as disjoint union of disjoint non empty open set and non empty ��-open set which leads to the 
contradiction. Thus B ⊆ G or B ⊆ H. Hence the proof. 
 
Definition: 4.12 
 
Non- empty subsets A, B of an ideal space (X, τ,	I) are called ��-separated, if cl*π(A) ∩ B = A ∩ cl*π(B) = ϕ. 
 
Theorem: 4.13 
 
Let (X, τ,	I) be an ideal space. If A and B are ��-separated sets of X and A ∪ B ∈ τ then A and B are open and ��-open 
respectively. 
 
Proof 
 
Let A and B are ��-separated. Then cl*π(A) ∩ B = A ∩ cl*π(B) = ϕ. Therefore B ⊆ X ∖ cl*π(A). This implies that B = (A ∪ B) ∩ (X 
∖ cl*π(A)). Since A ∪ B is open, A ∪ B is ��-open and X ∖ cl*π(A) is ��-open. Hence B is ��-open. Similarly we can obtain that A 
is open. 
 
Theorem: 4.14 
 
Let (X, τ,	I) be an ideal space and A, B ⊆ Y ⊆ X. The following are equivalent: 
(1) A, B are ��-separated in Y 
(2) A, B are ��-separated in X 
 
Proof 
 
Suppose A, B are ��-separated in Y. 
 

 clY
*π(A) ∩ B = A ∩ clY

*π(B) = ϕ 
 cl*π(A) ∩ Y∩	B = A ∩ cl*π(B) ∩Y = ϕ 
 cl*π(A) ∩ B = A ∩ cl*π(B) = ϕ 
 A, B are ��-separated in X. 

 
The converse is similar. 
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Definition: 4.15 
 
A subset A of an ideal space (X, τ,	I) is called ��-separated connected (briefly ���- connected), if A is not the union of two ��-
separated sets in (X, τ,	I). 
 
Theorem: 4.16 
 
Let Y be an open subset of an ideal space (X, τ,	I). Then the following are equivalent: 
 
(1) Y is ���- connected in (X, τ,	I). 
(2) Y is ��- connected in (X, τ,	I). 
 
Proof 
 
(1)  (2) 
 
Suppose that Y is not ��- connected. Then there exists non-empty disjoint open and ��-open sets A, B in Y such that Y = A ∪ B. 
Then A, B are open and ��-open sets in X respectively, since Y is open in X. Since A and B are disjoint then cl*π(A) ∩ B = ϕ = A 
∩ cl*π(B). This implies that A, B are ��-separated sets in X. Thus Y is not ���- connected in X which is a contradiction. Hence Y is 
��- connected in (X, τ,	I). 
 
(2)  (1) 
 
Suppose that Y is not ���- connected in X. Then there exists ��-separated sets A, B such that Y = A ∪ B implies A, B are open and 
��-open sets in X respectively. This implies that A, B are open and ��-open sets in Y respectively. Since A and B are�� -separated 
sets in X, then A and B are non-empty disjoint. Thus Y is not ��- connected which is a contradiction. Hence Y is ���- connected in 
(X, τ,	I). 
 
Theorem: 4.17 
 
Let (X, τ,	I) be an ideal space. If A is a ���- connected set of X and H, G are ��- separated sets of X with A ⊆ H ∪ G then either A 
⊆ H or A ⊆ G. 
 
Proof 
 
Let A ⊆ H ∪ G. Since A = (A∩H) ∪ (A∩G), then (A∩G) ∩ cl*π(A∩H) ⊆  G ∩ cl*π(H) = ϕ.  Similarly we have (A∩H) ∩ 
cl*π(A∩H) = ϕ. Suppose that A∩H and A∩G are non-empty. Then A is not ���- connected which is a contradiction. Thus either 
A∩H = ϕ or A∩G = ϕ implies A ⊆ H or A ⊆ G. 
 
Theorem: 4.18 
 
If A is a ���- connected set of an ideal space (X, τ,	I) and A ⊆ B ⊆ cl*π(A) then B is ���- connected. 
 
Proof 
 
Suppose that B is not ���- connected. Then there exist ���- separated sets H and G such that B = H∪G. This implies that H and G 
are non-empty and G ∩ cl*π(H) = ϕ = H ∩ cl*π(G). Hence either  
A ⊆ H or A ⊆ G. 
 

Case (i) 
 

Suppose that A ⊆ H. Then cl*π(A) ⊆ cl*π(H) and G ∩ cl*π(A) = ϕ. This shows that G ⊆ B ⊆ cl*π(A) and G = cl*π(A) ∩ G = ϕ. Thus 
G is an empty set which is a contradiction. Hence B is ���-connected. 
 

Case (ii) 
 
Suppose that A ⊆ G. Then cl(A)  ⊆ cl(G) and H ∩ cl(A) = ϕ. This implies that H ⊆ B ⊆ cl*π(A) = cl(A) and H = H ∩ cl(A) = ϕ. 
Therefore H is an empty set which is a contradiction. Hence B is  
���- connected. 
 

Corollary: 4.19 
 
If A is a ���-connected set in an ideal space (X, τ,	I) then cl*π(A) is ���- connected. 
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Theorem: 4.20 
 
If {Ai : i ∈ I} is a non-empty family of  ���-connected sets of an ideal space (X, τ,	I) with ���∈�  ≠ ϕ then ���∈�  is ���-
connected. 
 
Proof 
 
Suppose that ���∈�  is not ���-connected. Then we have ���∈�  = H ∪ G, where H and G are ��- separated sets in X. Since 

���∈�  ≠ ϕ, we have a point x in ���∈� . Since x ∈ ���∈�   either x ∈ H or x ∈ G. 
 
Case (i) 
 
Suppose that x ∈ H. Since x ∈ �� for each i ∈ I, then Ai and H intersect for each i ∈ I. Then Ai ⊆ G. Since H and G are disjoint, Ai 
⊆ H for all i ∈ I. Hence ���∈�  ⊆ H. This implies that G is empty which is a contradiction. Hence ���∈�  is ���-connected. 
 
Case (ii) 
 
Suppose that x ∈ G. Since x ∈ �� for each i ∈ I, then Ai and G intersect for each i ∈ I. Thus Ai ⊆ G. Since G and H are disjoint, Ai 
⊆ G for all i ∈ I. Thus ���∈�  ⊆ G. This shows that H is empty which is a contradiction. Hence ���∈�  is ���-connected. 
 
Definition: 4.21 
 
Let X be an ideal space and x ∈ X. The union of all ���-connected subsets of X containing x is called the ��-component of X 
containing x. 
 
Theorem: 4.22 
 
Each ��-component of an ideal space (X, τ,	I) is a maximal ���-connected set of X. 
 
Proof 
 
Let A be the ��-component of X containing x for every x ∈ X. To prove A is maximal ���-connected set of X. Suppose that A is 
not maximal ���-connected. Then there exists another ���-connected set B containing A. Therefore B is ���-connected set 
containing x. By the definition of ��-component B is contained in A. Thus A = B. Hence the proof. 
 
Theorem: 4.23 
 
The set of all distinct ��-components of an ideal space (X, τ,	I) forms a partition of X. 
 
Proof 
 
Let A and B be two distinct ��-components of X. Suppose that A and B intersect. Then A ∪ B is ���- connected in X. Since A ⊆ 
A∪B, then A is not maximal. Thus A and B are disjoint. Every x	∈ X belongs to the ��-component of X containing x. Therefore X 
is the disjoint union of all distinct ��-components. 
 
Theorem: 4. 24 
 
Each ��-component of an ideal space (X, τ,	I) is ��- closed in X. 
 
Proof 
 
Let A be a ��-component of X. By corollary: 4.19, cl*π(A) is ��- connected and A = cl*π(A). Hence A is ��- closed in X. 
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