

Available Online at http://www.journalajst.com

ASIAN JOURNAL OF SCIENCE AND TECHNOLOGY

Asian Journal of Science and Technology Vol. 2, Issue, 3, pp.027-029, March, 2011

RESEARCH ARTICLE

EFFECT OF POST HARVEST TREATMENTS OF CALCIUM CHLORIDE, CALCIUM NITRATE AND GIBBERELLIC ACID ON STORAGE BEHAVIOUR AND QUALITY OF GUAVA (*PSIDIUM GUAJAVA L*.) CV. LUCKNOW -49.

*Yearly Base Heart Najiar and Dr. Rajkumar, M.

Department of Horticulture, Annamalai University, Annamalainagar-608 002

ARTICLE INFO	ABSTRACT
Article History: Received 10 th December, 2010 Received in revised form 04 th January, 2011 Accepted 11 th February, 2011 Published online 30 th March, 2011 Key words:	An experiment was conducted at department of Horticulture, Annamalai University, Chidambaram to find out the effect of post harvest treatments of calcium chloride, calcium nitrate and gibberellic acid on storage behaviour and quality of guava (<i>psidium guajava</i> L.) cv Lucknow – 49. Thefruits were given post harvest treatment s of cacl ₂ (1%,2%,3%) calcium nitrate (1%,2%,3%) and GA ₃ (25,50,75 ppm) each for 5 minutes. The fruits were dried in air and stored in ambient temperature. Among these treatment. Post harvest dipping of fruits in calcium chloride (2%) extended shelf life successfully for about 12 days.

Copyright © 2011, Yearly Base Heart Najiar and Rajkumar. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

Physiological loss, Postharvest Treatments on total sugars.

Guava (Psidium guajava L.) belong to myrtaceae family is an evergeeen tree and one of the major fruit of India. It is extensively grown in wide variety of soil and climatic conditions. A side from being eaten fresh. The lipe fruit can also be processed into Jelly, dried fruit, canned slices in syrup. In India, guava is cultivated in an area of 1.82 million hectares with an annual production of 18.23 million tonnes. If occupies fifth position in terms of area and foruth position in terms of production among fruits of India (N.H.B production profile, 2008). The characteristic of different varieties of guava vary considerably fruit shape langes from round to pear shape. The skin color of mature ripe fruit can be various shades of green or yellow. The flesh colour can barge from white to yellow to pink and red. Texture and taste of different guava as well as the seed content also vary (Brown and Paxton 1983). A report of Food and Agricultural Integrated Development Action (FAIDA) by confederation of Indian Industry (CII) showed that the toral loss of fruits and vegetables has been estimated at 50% of their current production. In order to reduce loss on farm and procurement chain and prevent loss in value destruction. Packaging and storage system will play an important role. Various chemicals have been used to hasten or delay the ripening to reduce losses and to improve and maintain the colour and quality.

Postharvest applications with calcium chloride have been used to delay aging or ripening, consequently reducing post-harvest decay and controlling many diseases in fruits and vegatables (Cheour et al., 1990; El-Gamal et al., 2007). Postharvest calcium treatments used to increase calcium content of the cell wall were effective in delaying senescence resulting in firmer, higher quality fruit (Sams et al., 1993). Keeping these viehl point a study has been carried out with the following objectives.

- To assess the physical, physiological and biochemical changes of guava fruits during storage.
- To find out the effect of cacl₂, calcium nitrate and GA₃ on the quality of guava.

MATERIALS AND METHODS

An experiment was Laid out on RBD with 10 treatments and replicated three times. The fully developed, mature, unripe, healthy, good looking and uniform medium sized fruit apparently free from diseases and hruises were harvested and subjected to post harvest treatments and the observations on quality parameters were periodically recorded on 3rd, 6th, 9th and 12th day of storage. Fruits were analysed for physiological loss in weight (PLW), firmness, spoilage %, Total soluble solids (TSS), Total sugars. Titratable acidity, Ascorbic acid, Reducing and Non-reducing sugars.

^{*}Corresponding author: Yearly Base Heart Najiar,

Department of Horticulture, Annamalai University, Annamalainagar-608 002.

T_2	- Dipping frui	ts in $\operatorname{Cacl}_2(a)$ 2%	maintaining cell wall integrity and thus lowering the spoilage.
T_3	- Dipping frui	ts in $\operatorname{Cacl}_2 \overline{\textcircled{a}} 3\%$	This are in conformity with the finding of Mahajan et al.,
T_4	- Dipping frui	ts in CaNo ₃ @ 1%	(2011) in guava, Sabry (1998) in apple, Cheour et al., (1990)
T_5	- Dipping frui	ts in CaNo ₃ @ 2%	in Strawberry. The spoilage of fruits on the 12 th day of storage
T_6	- Dipping frui	ts in CaNo ₃ @ 3%	langed from 8.71 percent to 29.20 percent. Among the various
T ₇	- Dipping frui	ts in GA ₃ @ 25ppm	treatments the T_2 was found to be the best with a value of (8.71)
T_8	- Dipping frui	ts in GA ₃ @ 50 ppm	per cent) followed by T ₅ (9.48 per cent). The highest spoilage
Τ9	- Dipping frui	ts in GA ₃ @ 75 ppm	is in the T_{10} (29.20 per cent) control. The treatment exhibited
			wide variation for TSS on the 12 th day of storage which ranged
RESULTS AND DISCUSSION		ON	from 7.02° Brix to 10.71° Brix. During the period of
			evaluation (12 days) the total soluble solids (TSS) content of
The Date large	lad that the are seen	a a significant difference in th	fruits enhanced with the progress of ripening as a consequence

The Data levealed that there was a significant difference in the physiological loss in weight (PLW) of fruits under different treatments and storage intervals. The PLW of fruits gradually increased from 3rd day to 12th day of storage may be due to moisture loss through transpiration and respiration process of fruit. The decline in fruit weight during storage primarily attributed to the losses in moisture through physiological processes such as evaporation and transpiration (Roy and Pandey, 12).

al., 90) age ous 3.71 age ited ged of t of uence of conversion of starch into sugars, which is in line with the report made by Thumbhar and Desai (1986). The performance of T_2 was found to be the best with the value of (10.71° brix). The treatment T_{10} have exhibited the least performance with the value of (7.02° Brix) in control. The accumulation of total sugars during the process of ripening is a consequence of starch hydrolysis. The activity of α -amylase and β -amylase and starch phosphorylase leads to conversion of starch into sugars (Chundawat and Raghava Rao, 1981).

Effect of post harvest treatments on physiological loss in weight (%) and firmness in fruit of Guava Cv. Lucknow-49

Treatments	Physiological loss in weight (%)			Firmness (lb force)				
	3 rd	6 th	9 th	12 th	3 rd	6 th	9^{th}	12 th
T_1	0.56	1.50	2.70	3.50	16.51	15.78	13.18	10.22
T_2	0.32	1.12	2.01	2.80	17.49	16.58	14.09	11.15
T ₃	0.63	1.58	2.81	3.63	16.12	15.25	12.52	8.89
T_4	0.72	1.66	2.92	3.76	15.69	14.79	12.06	8.47
T ₅	0.42	1.38	2.45	3.15	17.02	16.15	13.67	10.68
T ₆	0.64	1.56	2.83	3.63	16.26	15.47	12.61	8.70
T ₇	0.73	1.65	2.93	3.77	15.52	14.52	12.19	8.32
T ₈	0.59	1.55	2.73	3.55	16.60	15.65	12.75	9.84
T ₉	0.80	1.74	3.04	3.96	15.27	14.11	11.48	7.40
T ₁₀	0.96	2.23	4.99	5.14	14.70	12.05	8.60	5.92

Effect of postharvest treatments on total sugars (%) and titratable acidity (%) of guava fruits during storage

Treatments	Total sugars (%)				Titratable	Titratable acidity (%)			
	3 rd	6 th	9 th	12 th	3 rd	6 th	9 th	12 th	
T_1	5.54	6.04	5.87	5.72	0.40	0.37	0.33	0.31	
T_2	5.85	6.36	6.26	6.20	0.46	0.42	0.42	0.40	
T ₃	5.56	5.96	5.81	5.67	0.39	0.33	0.32	0.30	
T_4	5.59	6.09	5.91	5.78	0.35	0.33	0.30	0.27	
T ₅	5.80	6.26	6.09	5.95	0.42	0.40	0.37	0.35	
T ₆	5.51	5.91	5.77	5.62	0.39	0.38	0.34	0.32	
T ₇	5.40	5.76	5.56	5.51	0.37	0.33	0.26	0.22	
T ₈	5.40	5.77	5.57	5.52	0.41	0.36	0.29	0.24	
T ₉	5.46	5.89	5.73	5.59	0.35	0.32	0.25	0.22	
T ₁₀	5.36	5.70	5.23	4.80	0.33	0.26	0.23	0.19	

Among these, the least PLW of 0.32 percent, 1.12 percent, 2.01 percent, 2.80 percent on 3^{rd} , 6^{th} , 9^{th} and 12^{th} days of storage were observed in T2 (2% Cacl2). The highest PLW recorded in control T_{10} of 0.96 per cent, 2.23 percent, 4.99 percent and 5.14 percent on 3^{rd} , 6^{th} , 9^{th} and 12^{th} days of storage. The firmness of fruit was gradually declined with proceeding of storage period from 3rd day to12th days may be due to breakdown of pectin substances and cell wall softening. Softening of fruits is caused either by breakdown of insoluble protopectins into soluble pectin or by hydrolysis of starch (Mattoo et al., 1975). The firmness range from 5.92 to 11.15 Lb/force on the 12th day of storage. Among the various treatment the highest firmness was observed in T₂(11.15 lb/ force) and followed by T₅ (10.68 lb/force). The lowest firmness was observed in T₁₀ (5.92 lb/force) control. Cacl₂ has merit in reducing spoilage in guava fruits which may be due to their positive role in delaying the senescence of fruits by

In the present study, the total sugar and reducing sugar of guava fruits increased slowly and steadily upto 6 days of storage and thereafter a sharp decling was noticed due to rapid metabolic breakdown in these fruits. The highest total sugar percentage was observed in the treatment of T_2 (6.20 percent). The lowest total sugar percentage was observed in T_{10} (4.80) percent) control. The highest reducing sugar was observed in T_2 (3.68 percent) and the lowest reducing sugar was in T_{10} (2.77 per cent) control. Upsurge in ethylene biosynthesis in the intercellular spaces proceeds climacteric rise in respiration leading to ripening of the fruit and the acidity level decreased (Singh, 1989). The fruits acidity on the 12th day of storage varied from 0.19 percent to 0.40 per cent. The highest values for this trait is (0.40 percent) T_2 . The lowest value is in T_{10} (0.19 percent). The decrease in ascorbic acid may be due to utilization of lesser amount of organic acids in metabolic activities which reduce the level of acidity with the progress in storage period. This are in conformity with the finding of Lal *et al.*, (2015) in citrus, Ismail et al., (2010) in guava, Jain and Dashora, (2011) in guava, Yadav et al., (2001) in guava fruits. The ascorbic acid content langed from 103.02mg/100g to 119.70 mg / 100g on the 12th day of storage. Among the various treatments the performance of T_2 was found to be the best with a value of 119.70 mg/100g. The least performance with a value of (103.02 mg/100g) T_{10} control.

REFERENCES

- Brown, B.T., and B.F. Paxton. 1983. Fresh market possibilities for guava fruit. *Food Tech. Aust.*, 35 (6): 288-290.
- Cheour, F., C.J. Wilemot, Y. Arul, J. Desjardins, P.M. Makhloul and A. Gosselin. 1990. Effect of foliar application of calcium chloride on post harvest strawberry ripening. J. Amer. Soc. Hort. Sci., 115: 789-792.
- *Chundawat, B.S and Raghava Rao. D.V. 1981. Effect of certain plant regulators and waxol on ripening of sapota [manilkara achras (millo foresbers)]. Paper presented at sym. On Recent Advances in Fruit Department: Ludhiana.
- El-Gamal. G. Nadia, F. Abd El-Kareem. Y.O. Fotouh and S.El-Mougy-Nehal. 2007- Induction of systemic resistance in potato plants against late and early blight diseases using chemical inducers under greenhouse and field conditions. *Res. J.Agric. Biol. Sci.*, 3 (2): 73-81.
- Ismail, O.M., Eman, A.A., Abd El. Moniem., A.S.E. Abd. Allah and M.A.A El-Naggar-2010. Influence of some post harvest treatments on guava fruits. *Agric. Biol. J.N. Amer.*, 1 (6): 1309-1318.
- Jain, M.C. and L.K. Dashora. 2011. Effect of plant growth regulators on physic-chemical characters and yield of guava cv. sardar under high density planting system. Indian. J. Hort., 68 (2): 39-42.
- Khumbhar, S.S. and Desai, M.T. 1986. Studies on shelf life of sapota fruits. J.Maharastra Agric. Univ., 11 (2): 184-186.

- Lal, D., V.K. Tripathi, Sanjeev kumar and Md. Abunayger. 2015. Effect of pre-harvest application of gibberllic acid, NAA, and calcium nitrate on fruit drop, maturity and storage quality of Kinnoal mandarin. Res. Environ. Life Sci., 8 (4): 561-564.
- Mahajan, B.V.C., B.S. Ghuman, and H.I. Bons. 2011. Effect of post harvest treatments of calcium chloride, calcium nitrate and Gibberellic acid on storage behaviour and quality of guava fruits. J. Hort. Sci. orna. Plants., 3(1): 38-42.
- Mootoo, A. 1991. Effect of post harvest calcium chloride dips on ripening changes in Talie mangoes. Trop. Sci., 31: 243-248.
- Roy.S.T. and pandey. R.M. 1983. Effect of existing method of harvesting on ripening and storage of mango. Silver jubiler celebration seminar on plant physiology. Indian Soc. plant physiol. Sessionl. Abst. 1-22.
- Sabry, M.F. 1998. Effect of some biological treatment or fungal infection, quality and storage ability of apple fruits, M.Sc. Thesis, Cairo Univ., Egypt.
- Sams, C.E., Conway, W.S., Abott, J.A., Lewis, R.J. and Benshalom, N. 1993. Firmness and decay of apples following post-harvest pressure infiltration of calcium and heat treatment. J. Amer. Hort. Sci., 118 (5): 623-627.
- ^{*}Singh, S. 1989. Studies on ripening and quality improvement in perlette and Beauty seedless grape. Thesis submitted to N.D. University of Agrl. and Tech. Faziabad for the degree of Ph.D in Horticulture.
- Yadav, S.J., S.K. Bhatia., R.L. Godara and G.S. Rana. 2001. Effect of growth regulators on the yield and quality of winter season guava cv. L-49. Haryana J. Hort.Sci., 30: 1-2.
