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 ARTICLE INFO    ABSTRACT 
 

Oscillating reactions are among the most fascinating of chemical reactions .The system is considered 
here with two chemical species, the reactant and autocatalyst. The non steady-state concentration 
profiles of the reactant and autocatalyst in this model are obtained using He’s Homotopy pertuburation 
method for all values parameters. Furthermore, in this work the numerical simulation of the problem is 
also reported using SCILAB/MATLAB program. A satisfactory agreement with numerical results is 
noted. 
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INTRODUCTION 
 
There is a great deal of interest in chemical reactions which exhibit oscillatory solutions. These oscillations occur due to feedback 
in the system either chemical feedback such as autocatalysis or temperature feedback due to non-isothermal reaction.  Thanga 
Pandi and  Rajendran (2011) have obtained the non steady- state concentration profiles of the reactant, product and autocatalyst in 
Gray-Scott model using He’s Homotopy pertuburation method for small values parameters. Shanthi et al. (2012) discussed the   
Gray-Scott scheme, which represents cubic-autocatalysis with linear catalyst decay. See Gray (1988) and Gray and Scott (1990) 
for reviews and descriptions of much of this work. Recently Marchant (2002) obtained the steady-state solutions for the cubic-
autocatalytic reaction with linear decay in a reaction- diffusion cell using semi-analytical method. However, to the best of our 
knowledge there was no analytical result corresponding to the steady-state concentration of reactant and autocatalyst for all 
positive values of parameters have reported. The purpose of this communication is to derive the approximate analytical 
expressions for the concentrations of the reactant and autocatalyst for non steady state, using homotopy perturbation method. 
 
Kinetic model and rate equations 
 
We consider a complete reaction kinetics based upon the cubic autocatalator, with the intermediate species A produced via a 
simple first-order decay process from a precursor or reactant P. Thus, the scheme is represented as follows (Merkin (1986)): 
 

pkrateAP 0                               ………………………….(1) 
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Later, the uncatalysed process parallel to step (1), namely

 

 

akrateBA 3                                             ……………………..(4) 

 
will also be included, along with the reverse of these two reactions.    The governing differential rate equations  for the reaction 
scheme (1) to (3)  can be represented as follows:  
 

pktddp
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The initial concentration of species  A is 0)0( ata 
. 

Thus, by introducing the following dimensionless variables    
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the differential equations (5) to (7) becomes in dimensionless form as follows:  
 

 '/ dd           ……………………….(9) 
 

2'/  dd          ……………………….(10) 
 

2

2 //  dd          ……………………….(11) 
 

Since the equation (9) is first order linear differential equation, we can obtain the concentration of the precursor as   
 

)exp( '

0
         ……………………….(12) 

 

where 000 / ap in the dimensionless form for the initial concentration of P. Substituting this exact result in the equation  (9) 

leaves two rate equations describing the evolution of the concentrations of  A and B (the intermediate species). The initial 
concentration of the precursor reactant may be commonly many orders of magnitude greater than that of a species such as A, thus 

0  may be very large compared with unity. i.e. 0k will be small compared with
2
01ak , or equivalently, 

' will be small compared 

with unity. Now the equations (10) and (11) becomes 
 

2'

/    kedd                                 …………………………(13) 
 

 mdd  2/                                     …………………………(14) 

 

where 
2

1 /1    mand
o .………………………..(15) 

 

The initial conditions becomes  
 

0)0(,1)0(   ,                        ………………………….(16) 
 

where 000 /ab is some constant. 

 

Analytical solutions of concentrations of the species using HPM 
 
Recently many authors have applied the HPM (Ghori, Ahmed, and .Siddiqui (2007),Ozis and Yildirim, (2007), Cai., Wu and Li 
(2006) and Ariel (2010) ) to various problems and demonstrated the efficiency of the HPM for handling non-linear structures. This 
method is a combination of homotopy in topology and classic perturbation techniques.  He (1999) have used the HPM to solve 
many linear and nonlinear problems. Recently Rajendran and co-workers (2010) obtained the analytical solution for various non-
linear problems in enzyme-substrate reaction mechanisms. The HPM is unique in its applicability, accuracy and efficiency. The 
HPM uses the imbedding parameter p as a small parameter and only a few iterations are needed to search for an asymptotic 
solution. By solving the Eqs. (13) and (14) using homotopy perturbation method (Refer Appendix-A), we can obtain the 
concentration of species as follows: 
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Equations (18) and (19) represent the new simple analytical expression of concentration of species for all values of parameters.  
 

Numerical simulation 
 

The non-linear differential equations (13) and (14) are also solved by numerical methods using SCILAB/MATLAB software. Its 
numerical solution is compared with homotopy perturbation method in Figs. (1) - (2) and Tables 1 and 2. It gives a satisfactory 

agreement for all values of parameters      
0

',,  andmk .The SCILAB/MATLAB program is also given in Appendix-B. 
 

 
 

Fig. 1. Comparison of concentration of  for 3.1,1 '  m and various values of 
0

' Doted lines represent the  

analytical solution and solid lines the numerical solution 
 

 
 

Fig. 2. Comparison of concentration of  for 3.1,5.0 '
0

'   and various values of m . Doted lines represent  

the analytical solution and solid lines the numerical solution 
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Fig.3 Profiles of the normalized concentrations  versus dimensionless time  calculated using equation  

(18) for various values of parameters. (a) 3.1'  and various values of 
0
  

(b) 1
0
 and various values of 

'
 

 

 
 

Fig.4 (a) Profiles of the normalized concentrations  versus dimensionless time  calculated using equation (19) for various values of 

parameter. (a) 3.1,1 '  m and various values of 0
' . (b) 1.0,1 0

'  m and various values of 
' .                                        

(c) 1.0,3.1 0
''   and various values of m  
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Fig.5 Profiles of the normalized concentrations intermediate species B  ( )( for (a) 3.1,1 '  m and various values of 
0

' . 

(b) 20,95.0
0

'  m and various values of 
' . (c)  1.0,3.0

0

''   and various values of m .  

The curves are plotted using equations (20) 
 

 
 

Fig. 6. Plot of concentration profiles of  and, .The values of the parameters are 

3.2,1,3.1,1
0

'

0

'   m
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List of symbols 
 

symbol meaning units 

a Concentration of intermediate A mol dm-3 

b Concentration of intermediate B mol dm-3 

k0 Rate constant for decay of precursor s-1 

k1 Rate constant for autocatalytic step dm6 mol-2 s-1 

k2 Rate constant for autocatalyst decay s-1 

k3 Rate constant for uncatalysed step  s-1 

p Concentration of precursor P mol dm-3 

t  
time s 

  A/a0, Dimensionless concentration of A none 

  B/a0, Dimensionless concentration of B none 

'  
2

010
/ akk ,Dimensionless rate constant for decay of precursor 

none 

k 
0

' ,Bifurcation parameter 
none 

  
0

/ ap , Dimensionless concentration of P 

( precursor/reactant)  

none 

  tak 2

01
, Dimensionless time 

none 

2
  2

2

01
/ kak , Dimensionless catalyst lifeline 

none 

 

Table 1: Comparison of normalized non-steady-state concentration of  with simulation results for various values of 0
'  

and for some fixed values of 13.1'  mand
 

 
 
 
 

 
 
 
 
 
 
 
 

Table 2. Comparison of normalized non-steady-state concentration of  with simulation results for various values of m  

and for some fixed values of 5.03.1 0
''   and  

 
 
 
 
 
 
 
 
 
 
DISCUSSIONS     
 
Figure 3-5 show the analytical expressions of dimensionless concentrations  and,  of species for various values of 

dimensionless reaction parameters
0

',,  andmk . From these Figs 3(a-b), it is inferred that the value of the concentration of 

reactant always decreases from its initial value of the concentration for all values of parameters. Also the concentration increases 

when 
0

 eases or 
' decreases. The concentration of  decreases become zero when dimensionless time ≥ 10.  Figs 4 (a-c) and (c) 

  Concentration    

when 0
'   = 1 when  0

'   = 1.5 when  0
'   = 2 

Eq.(18) Simulation % of error 
deviation 

Eq.(18) Simulation % of error 
deviation 

Eq.(18) Simulation % of error 
deviation 

0 0.9999  1.0000 0.01 1.0000 1.0000 0.00 1.0000 1.0000 0.00 
1 1.5541 1.5537 0.02 1.8334 1.8329 0.02 2.1126 2.1120 0.02 
2 1.7057 1.7051 0.03 2.0610 2.0603 0.03 2.4163 2.4153 0.04 
3 1.7471 1.7464 0.04 2.1232 2.1224 0.03 2.4993 2.4979 0.05 
4 1.7584 1.7574 0.05 2.1402 2.1393 0.04 2.5219 2.5203 0.06 
5 1.7615 1.7598 0.09 2.1448 2.1432 0.07 2.5281 2.5260 0.08 

 Average error %        0.04 Average error %            0.03 Average error %            0.04 

 


 

Concentration    

when m  = 0.5 when  m   = 1 when  m   = 2 

Eq.(19) Simulation % of error 
deviation 

Eq.(19) Simulation % of error 
deviation 

Eq.(19) Simulation % of error 
deviation 

0 0.1021  0.0999 2.20 0.1016 0.1000 1.60 0.1011 0.0999 1.20 
1 0.0674 0.0667 1.04 0.0400 0.3965 1.01 0.0143 0.0142 0.70 
2 0.0432 0.0434 0.46 0.0151 0.0150 0.66 0.0019 0.0019 0.00 
3 0.0271 0.0276 1.81 0.0056 0.0056 0.00 0.0002 0.0002 0.00 
4 0.0167 0.0172 2.90 0.0020 0.0020 0.00 0.0000 0.0000 0.00 
5 0.0102 0.0106 3.77 0.0007 0.0007 0.00 0.0000 0.0000 0.00 

 Average error %         2.03 Average error %            0.54 Average error %            0.31 
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represents the plot of concentration of intermediate species  versus time for various values of parameters. From the figures it is 

observed that  the  concentration of intermediate species increases slowly from the initial concentration )1(
0
 . Also  From 

these figures ,it is  inferred that the concentration increases when the value of the parameters of 
0

' and m increases or 
'

decreases. Fig 5 (a) represents that the dimensionless concentration autocatalyst   versus time. From the Figures it is observed 

that concentration autocatalyst is increases when 
0

'  increases or 
' and m decreases. It reaches the steady state when time 

3 .  
 
Conclusion 
 
In this work, the coupled system of time dependent non linear differential equations for oscillatory chemical autocatalytic reaction 
has been solved analytically using the HPM. Moreover, we have also presented an approximate analytical expression for the non-
steady state concentration of profiles of reactant and product for all vales of time and other parameters. The extension of the 
procedure to well-stirred reactor (CSTR) models seems possible. 
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Appendix (A). Solution of the nonlinear the equations using homotopy perturbation method 
 
In this appendix, we indicate how Eqs. (13) and (14) may be solved using HPM . To illustrate the basic concepts of this method 
(HPM), we consider the following nonlinear differential equation L(u) + N(u) − f (r) = 0 where L is a linear operator, N is a 
nonlinear operator, and f(r) is a given continuous function. We construct a Homotopy Ω×[0,1]→ R which satisfies 
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The initial approximations are as follows: 

 

0)0(,1)0(                                                                                                (A3) 

 
The approximate solutions of (A1) and (A2) are given by 
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Substituting Equations (A4) and (A5) comparing the coefficients of like powers of P, we obtain the following differential 
equations. 
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Upon solving the equations (A6)-(A9) and using the boundary conditions (A3), we get 
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Hence we obtain  
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10                                                                                                                       (A14)     

10                                                                                                                          (A15)  

 
Substituting the equations (A10) to (A13) in the above equations we obtain the Eqs.(13) and (14) in the text. 
 
Appendix B:    Matlab/scilab program for the numerical solution of the non linear equations (13) and (14)     
  
function main13; 
options=odeset('RelTol',1e-6,'Stats','on'); 
%initial conditions 
x0=[1;0.1]; 
tspan=[0,5]; 
tic 
[t,x]=ode45(@TestFunction,tspan,x0,options); 
toc 
figure 
hold on 
plot(t,x(:,1),'red') 
plot(t,x(:,2),'green') 
legend('x1','x2') 
ylable('x') 
xlable('t') 
return 
function[dx_dt]=TestFunction(t,x) 
dx_dt(1)=0.5*exp(-1.3*t)-x(1)*(x(2))^2; 
dx_dt(2)=x(1)*x(2)^2-(3*x(2)); 
dx_dt=dx_dt'; 
return 
 
 
 
 

******* 
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