
         
                                                                                                                                                            
 
 

 

 
 

 
 
 

 

RESEARCH ARTICLE 
 

AN ANALYSIS OF CHALLENGES IN AGILE DEVELOPMENT 
 

*Arvind Pillai and Mythili Thirugnanam 
 

School of Computer Science and Engineering, VIT University, Vellore, India 
 

 
 

 ARTICLE INFO    ABSTRACT 
 

Software project management techniques and business methodologies have been developed from 
practices in the Information Technology industry to ensure a high rate of success with the given 
deadlines. These techniques have been adopted by almost all the top firms to ensure a lucrative and 
efficient solution to a problem. Moreover, the size of the project management team and model 
embraced to ensure success depends on the nature of the project. Agile development model using agile 
teams are one way of solving these complex problems in a flexible way, this development model is 
gaining popularity at a tremendous rate, especially among small companies comprising of limited 
members in a team. Therefore, this paper reviews the main challenges in an agile development 
environment and the methods employed to overcome these risks and challenges. 

 
 
 

 
 

Copyright©2016, Arvind Pillai and Mythili Thirugnanam. This is an open access article distributed under the Creative Commons Attribution License, which 
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 
 

 

 

INTRODUCTION 
 

Business applications are systems that are today typically 
accessed via Internet technologies. As per (Ghanbury,  2006) 
the technology has increased the connectivity all around the 
globe and organisations are globalising faster than ever before. 
This advancement has raised the expectations of people in 
their work conditions and living standards. From the 
perspective of (Unhelkar B, 2010), agile methods are 
developer centric, starting with the developer writing a part of 
the code and comparing it with the requirements of the user 
and demonstrating the working of the code, the user gives his 
feedback through which the code can be enhanced or 
modified. Agile approach is more efficient (Karlesky and 
Vanter October 2008) than the traditional approach of using 
the waterfall model. The main reason for this is the inability of 
the waterfall model to accommodate changes in the 
requirements when the project is nearing completion. From the 
waterfall model depicted in (Govardhanet al, September 
2010), it can be observed that the user must specify the 
requirements to the user at the beginning of the first phase, and 
these requirements must be complete and accurate, the 
inability of the client to lead report all the requirements with 
maximum accuracy leads to the failure of this model. 
Therefore, to compensate for the limitations of the traditional 
approach for project management, major technology firms 
such as Yahoo and Google have adopted agile development 
model for some of their teams. 
 

*Corresponding author: Arvind Pillai, 
School of Computer Science and Engineering, VIT University, 
Vellore, India 

 
Highlights on some agile development methods 
 
Crystal clear method (Cockburn, 2004) is used mainly to 
facilitate small team which are not life-critical and co-located 
teams having different size and different stages of criticality: 
Clear, Yellow, Orange, Red and Blue. It is the most agile 
method which has seven characteristics: frequent delivery, 
reflective improvement, personal safety, easy to access to 
expert user, focus, osmotic communication, and requirements 
for technical environment. Dynamic software development 
method (DSDM) (Stapleton, 2003) involves the division of 
projects into three phase namely, pre-project, project life-
cycle, and post project. DSDM is composed of nine principles: 
empowering the project team, frequent delivery, high-level 
scope being fixed before project starts, testing throughout the 
lifecycle, user involvement, addressing current business 
models, iterative and incremental approach, allow for 
reversing changes and efficient communication. Feature-
driven development (S.R. Palmer and J.M. Felsing, 2002) uses 
a mixture of model-driven and agile development with 
importance laid on the initial object model, iterative design for 
each feature and division of work in features. Moreover, 
design and development are the two phases of an iteration. 
This model can be used to develop critical systems. Lean 
software development (M. Poppendieck and T. Poppendieck, 
2003) is developed from the principles of lean production, to 
be more specific, from the Toyota production system to 
software development. This is model is comprised of seven 
principles: amplify learning, decide as late as possible, 
empower the team, eliminate waste, build integrity, deliver as 

 
ISSN: 0976-3376 

Asian Journal of Science and Technology 
Vol. 07, Issue, 11, pp.3908-3911, November, 2016 

 

Available Online at http://www.journalajst.com 
 

 

ASIAN JOURNAL OF  
SCIENCE AND TECHNOLOGY  

Article History: 
 

Received 27th August, 2016 
Received in revised form 
17th September, 2016 
Accepted 01st October, 2016 
Published online 30th November, 2016 

Key words:  
 

Agile development, Risk identification,  
Work breakdown structure, 
Gap analysis, Effort estimation,  
Challenge. 



fast as possible and see the whole picture. Scrum (K. 
Schwaber and M. Beedle, 2001) is a model that lays emphasis 
on project management in scenarios where planning ahead is 
difficult. This model consists of mechanisms for “empirical 
process control”, the main idea of this concept revolves around 
feedback loops. Software is developed by a self-organizing 
team in increments (called ‘‘sprints”), starting with planning 
and ending with a review. Features to be implemented in the 
system are registered in a backlog. Then, the product owner 
decides which backlog items should be developed in the 
following sprint. Team members coordinate their work in a 
daily stand-up meeting. One team member, the scrum master, 
oversees solving problems that stop the team from working 
effectively. Extreme Programming (Beck, 2000) (Beck, 2004) 
sheds light on the best practices which can enchance 
development. It is composed of twelve practices: collective 
ownership, small releases, simple design, on-site customers, 
40-h week, coding standards, the planning game, pair 
programming, metaphor, refactoring, testing and continuous 
integration. XP2 is a revamped version of extreme 
programming which consists of the following practices: whole 
team, continuous integration, 10-minute build, slack, test-first 
programming, stories, pair programming, weekly cycle, 
quarterly cycle, sit together, informative workspace, energized 
work and incremental design. This model gives a 
supplementary information about eleven corollary practices.  
 
Challenges in agile development 
 
There are several fundamental differences between traditional 
and agile models as shown in Table 1. This gives rise to 
several challenges in agile development. 
 

Table 1. Difference between Traditional and Agile project 
management models 

 

Domain of 
difference 

Traditional Agile 

Core idea This model is dependent 
on processes and the 
complementary tools. 

This model is dependent 
on the cooperation 
between people in a team. 

Documentation 
method 

Work documents must 
be filed which measures 
each activity. 

Software is used to 
measure the progress of 
the project and more 
interested in the design 
code. 

Interaction Client-Developer 
interaction is minimal. 

Client-Developer 
interaction is an integral 
part and it takes place 
frequently. 

Flexibility It is rigid, i.e. all 
requirements must be 
specified before the end 
of the first phase. 

It is more flexible, i.e. 
changes to the project can 
be made in almost any of 
its phases. 

Extradition Does not permit the 
extradition continuously 
working for the client. 

Permits the extradition 
continuously working for 
the client 

 
From Table 1, It is understood that agile development lays 
emphasis on the psychology and behavioural aspects of human 
beings. However, because of the unpredictable nature of these 
aspects we need to make certain modifications to the 
traditional model to extract the full potential of agile 
development. Therefore, issues and solutions with respect to 
risk, work breakdown structure, gap analysis and effort 
estimation are discussed in the following sections. 
 

Risk identification in agile environment 
 

In an agile environment risk is depended upon the two intrinsic 
factors namely, Validation and Verification. Risks are 
identified to manage them properly using a risk management 
plan, the following risks are crucial to a project with uses agile 
development: 
 

 Validation makes sure that the system built is in 
accordance with the requirements specified by the user. 

 Verification analyses the outputs given by the system 
for multiple iterations and verifies the output through a 
process of functional testing and code reviews. 

 Human threats such as lack of human resources to 
complete all the tasks within the deadline, unexpected 
holidays due to medical reasons by the members of the 
team or death of a family member, this threat also 
accounts for lack of harmony within a team. 

 Operational threats such as the lack of sufficient 
resources for each team. 

 Political threats such as change in national policies and 
compliance agreements because of a newly elected 
government. 

 Financial factors which include both internal and 
external sources of monetary funds. 

 The cost and time constraints that determine the success 
of a project. 

 Technical factors: a piece of technology might be 
obsolete when the project enters the highly competitive 
market. 

 

Work breakdown structure in agile development 
 
The traditional work breakdown structures may not be 
completely compatible with agile projects because agile 
involves constant interaction with the client through the entire 
course of the project. In an agile environment, the ideas 
suggested by the client must be implemented as and when it is 
communicated with the team. Therefore, we follow certain 
rules or techniques while constructing our work breakdown 
structure to ensure successful and satisfactory completion of 
the project. The features that needs to be implemented must be 
placed in a forced rank order, i.e. each feature must be given a 
priority number which signifies the lowest number has highest 
priority, to be specific, a task or feature assigned the priority 
number ‘1’ must be executed first before proceeding to the 
other task. The use of priority words such as ‘Maximum’, 
‘Minimum’, ’Most’, ‘High’, ‘Moderate’, ‘Low’ must be 
avoided (Bozzuto and Brian, 2011).  
 

 
 

Fig. 1. Difference between traditional and agile cycles of work 
(Bozzuto and Brian, 2011) 

3909             Asian Journal of Science and Technology Vol. 07, Issue, 11, pp. 3908-3911, November, 2016 
 



In Fig. 1, it can be observed that unlike the traditional 
approach the agile development model uses analysis, design, 
construction and QA phases for each feature, the priority of a 
feature can be changed during the project provided the feature 
has not yet started. In an agile environment, we divide the 
work in to smaller pieces which can be completed in under two 
weeks, this is done to improve testability and flexibility of 
individual features. Work breakdown structure is usually 
constructed by the project manager or other technical heads 
who usually think from a one-dimensional perspective, but the 
project is carried out for the convenience of the user. Hence, 
we must this from a user’s perspective, this is usually achieved 
by a concept from extreme programming. User Stories is a part 
of extreme programming which consists of two components: a 
narrative and acceptance criteria. The narrative contains an 
actor, an action and a justification and the acceptance criteria 
contains the criteria the business will test to approve a given 
story. 
 

Table 2. Narrative and Acceptance Criteria for a multiplayer 
game with priority 

 

Priority Narrative Acceptance Criteria 

1 1. As a gamer, I want 
to search for heroes 
using by their names, 
so that I can select the 
hero I want to play 

1. I can search based on 
an exact hero name. 
2. I can search based on 
letters within the name of 
the hero. 

2 1. As a gamer, I can 
select a list of five 
heroes for my team, 
to build a list of 
heroes for my team 

1. I can add heroes from 
my search list. 
2. Delete heroes from 
my search list. 
3. Submit my selected 
team. 
4. Ban heroes that my 
opponent cannot select. 

 
The information in table 2 gives us an example of narrative 
and acceptance criteria for a multiplayer game, this will give 
us further insight into the solution. 
 

Gap analysis in agile development 
 
Gap analysis is the comparison of actual performance of an 
information system with the desired performance which will 
improve efficiency. It consists of a current state which gives us 
information about the current performance exhibited by the 
system, future state which informs us about the performance 
which is expected, gap description which will outline the 
factors which contribute to the gap and steps and proposals to 
bridge this gap.  
 

Table 3. Difference between agile and traditional gap analysis 
 

Agile gap analysis Traditional gap analysis 

Gain an understanding about 
the actual process used by 
people. 

Read through gap analysis 
documents to check whether the 
documented processes are 
followed. 

Requires rigorous analysis and 
multiple Q&A sessions with 
the members of the team. 

Does not provide insight on the 
real processes followed by the 
people. 

It helps us uncover the most 
critical gap which can be 
improved to increase 
performance. 

Behaviour change is very 
difficult to improve because it 
does not involve constant 
interaction with the members of 
the team. 

 

There are several ways to run a gap analysis, but in an agile 
environment we will focus on the behavioural route instead of 
the rigid documentation route. Table 3 illustrates the 
differences between an agile gap analysis and a traditional gap 
analysis (McMahon and Paul, 2010). 
 

Table 4. Criteria for size estimation 
 

Size Criteria to assign this category 

Small Single task at a location must be executed only once. 
Medium Few tasks at multiple places must be executed few times. 
Large Many tasks at multiple places must be executed repeatedly. 

 
Table 5. Criteria for complexity estimation 

 

Complexity  Criteria to assign this category 

Low The knowledge and skill needed to accomplish this task 
is already known (or) this task has already been done 
before. 

Medium This is not familiar but with reasonable amount of 
research the task can be accomplished. 

High This task has neither been done before nor been 
accomplished by anyone, people lack the knowledge 
need to accomplish this task 

 
In an agile gap analysis, interviews are conducted mostly in an 
informal manner to keep the interaction as comfortable as 
possible, specific words in the CMMI (Capability Maturity 
Model Integration) model are not used to keep the discussion 
focused on the team member, some questions which are asked 
in the interview by the project manager are as follows: 
 

 “How do you perform your work?” 
 “Do you use a specific process or randomly start your 

work?” 
 “Do you document your progress?” 
 “Do you consider yourself to be efficient in your 

work?” 
 

The project managers usually lay emphasis on listening during 
the interaction, this interaction is recorded and later analysed 
by the managers, the analysed evidence is then compared with 
the processes listed in the CMMI model, to be more specific, 
the processes which are omitted by the team member or the 
processes which go against the CMMI model. Consequently, a 
detailed report is generated and given to the senior 
management of the organisation or the client. 
 
Effort estimation in agile development 
 
Effort estimation is an important task in software development 
which determines constraints such as time, human resources 
and money. Traditional effort estimation techniques such as 
COCOMO which are used to determine entire lifecycle 
processes cannot be used in an agile environment because 
methods used in agile programming like Scrum and Extreme 
programming are iterative processes which focus on many 
processes with small complexity. The reasons why we cannot 
use a traditional approach in agile environment are listed 
below: 
 

 Traditional methods will not work for large amounts of 
data which are pooled in from similar projects. Agile 
development focuses on diversity of data. 

3910             Asian Journal of Science and Technology Vol. 07, Issue, 11, pp. 3908-3911, November, 2016 
 



 Incremental approach does not focus on listing all the 
requirements in the initial phase followed by figuring 
out the entire lifecycle time, therefore we cannot use 
traditional methods. 
 

Let us consider Extreme Programming, a planning game is 
used to determine the nature of iteration. The effort is 
estimated is estimated by the developers in units of effort 
rather than in units of time. Project velocity is a method 
proposed in (Jeffries et al, 2001) to determine the number of 
units of effort that can be done in a week. A method used to 
calculate the effort in an agile environment is proposed by 
(Fernando Machado and Luis Joyanes, 2005) which uses a 4-
step procedure: 
 

 The size and complexity of each task is estimated using 
a set of guidelines. 

 Classify the tasks based on size and complexity 
described in table 4 and table 5. 

 Depending on the category of a task, the number of 
hours required for this task can be calculated using the 
rate of that category, the rate varies with respect to each 
iteration. 

 Finally, all the hours computed are added to form a 
single entity which is then divided by the number of 
developers assigned to the iteration to determine the 
duration of the entire iteration. 

 

Conclusion 
 

To conclude, from this paper it is clearly understood that agile 
development is different from traditional methods in several 
different ways, moreover, although agile developments has 
certain limitations related to the human resources and 
psychology of humans it has proved itself worthy in small 
teams such as start-ups. Furthermore, several novel methods 
are being proposed to facilitate the infusion of agile 
development into mainstream companies, these methods are 
related to improving the efficiency of effort estimation, better 
understanding of risks involved in an agile environment, 
giving better techniques to project manager to handle their 
teams and improved gap-analysis techniques. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

REFERENCES 
 
Beck, K. 2000. Extreme Programming Explained: Embrace 

Change. Addison-Wesley. 
Beck, K. 2004. Extreme Programming Explained: Embrace 

Change, second ed. Addison-Wesley. 
Bozzuto, B. 2011, September 14). The Product Backlog, an 

Agile WBS. Retrieved from http://www.solutionsiq.com/ 
product-backlog-agile-wbs/ 

Cockburn, A. 2004. Crystal Clear: A Human-Powered 
Methodology for Small Teams. Addison-Wesley. 

Fernando Machado, L. J. 2005. Effort Estimation in Agile 
Software Development: A method and a Case Study. 
Software Engineering Research and Practice, 470-475. 

Ghanbury, A. 2006. Collaborative Business Process 
Engineering across Multiple Organisations. ACIS. 

Govardhan, N. M. (September 2010). A comparison between 
five models of software engineering. International Journal 
of Computer Science Issues, Vol. 7, Issue 5. 

Jeffries, R., A. A. 2001. Extreme Programming Installed. 
Addison-Wesley. 

Karlesky, M., M. (October 2008). Agile project Management 
(or, Burning Your Gantt Charts). Embedded Systems 
Conference Boston, 247-267. 

McMahon, P. E. (2010, August 9). Bringing Process Maturity 
to Agile Organizations. Retrieved from informIT: 
http://www.informit.com/articles/article.aspx?p=1620555&
seqNum=4 

Poppendieck, M., T. P. 2003. Lean Software Development- An 
Agile Toolkit for Software Development Managers. 
Boston: Addison-Wesley. 

S.R. Palmer, J. F. 2002. A Practical Guide to Feature-driven 
Development. NJ: Prentice Hall. 

Schwaber, K., M. B. 2001. Agile Software Development with 
Scrum. Upper Saddle River: Prentice Hall. 

Stapleton, J. 2003. DSDN: Business Focussed Development, 
second ed. Pearson Education. 

Unhelkar, B. 2010. Agile in Practice - A Composite Approach. 
Cutter Consortium, Vol 11, No 1. 

******* 

3911             Asian Journal of Science and Technology Vol. 07, Issue, 11, pp. 3908-3911, November, 2016 
 


