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The calculation of the equivalent modulus of the particle reinforced composite materials is an important 
part of composite materials mechanics, and there are two kinds of analytic methods for equivalent 
modulus. One is bound approaches and the other is direct estimations. This paper improved the methods 
mentioned above and obtained the local stress field of nano-rotating ellipsoidal inclusion based on the 
energy equivalence principle. The equivalent modulus of composite materials containing randomly 
distributed nano-ellipsoidal inclusions was also estimated. 
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INTRODUCTION 
 
The determination of the effective elastic behavior for 
heterogeneous materials in terms of internal phases (inclusions 
and cavities) properties has been widely investigated during 
the past years. The calculation of the equivalent modulus of 
the particle reinforced composite materials is an important part 
of composite material mechanics, there are two kinds of 
analytic methods for equivalent modulus. One is bound 
approaches and the other is direct estimations. Both methods 
simplify the model and merely consider composite materials 
with random distribution of cylinder or ball. In this context, 
the self-consistent and Mori-Tanaka methods (Mori and 
Tanaka, 1973) which have been extensively used: they 
describe material in homogeneities as ellipsoidal inclusions 
isolated in a homogeneous medium applied to uniform remote 
load. Later, Bornert (Bornert, 1996) has obtained the 
equivalent modulus of composite materials containing 
ellipsoidal inclusions by using finite element method. In order 
to solve grid division and calculation increasing exponentially 
problem, Riccardi and Montheillet (Riccardi and Montheillet, 
1999) have improved 3PM method proposed by Luo and 
Weng (Luo and Weng, 1987, 1989) to estimate the equivalent 
modulus of elliptical inclusion compound material.  
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It takes into account the complex interaction between matrix 
and inclusions by considering the representative inclusion as 
embedded in a finite matrix layer, which is itself embedded in 
the effective medium. Even so, they have neglected the 
influence of interface stress when the scale of ellipsoidal 
inclusion is nanometer grade. Huang et al. (Huang et al., 1994, 
1995) have proposed a generalized self-consistent method, to 
determine the in-plane effective moduli of a transversely 
isotropic material containing unidirectionally aligned 
cylindrical inclusions, the elliptical cross section of the latter 
being randomly oriented in the transverse plane. In this paper, 
we propose a method which avoids the latter difficulties, for a 
heterogeneous material containing single phase and randomly 
oriented ellipsoidal inclusions with the same aspect ratios. We 
improve the methods mentioned above and obtaine the local 
stress field of the nanosized ellipsoidal inclusion based on the 
energy equivalence principle. The equivalent moduli of 
composite materials containing randomly distributed nano-
ellipsoidal inclusions are also estimated in this paper. 
 
Energy equivalence equation 
 
Composite materials are constitute of the matrix with Young's 

modulus EＭ  and Poisson's ratioＭ , and 1N   kind of 
isotropic inclusions, which has its own shape (s=a/b, short half 
axis a, major half axis b), orientation, elastic modulus EＩ, 
Poisson's ratio Ｉ  and volume percentage fＩ. In general, 

composite materials is anisotropic on the macro materials, 
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their equivalent moduli are expressed as the tensor klmnC . In 

order to get the equivalent moduli, we need to apply a force 
0
kl  on materials with volume V  of as shown in figure 1. 

 

 
 

Fig.1. Composites with randomly distributed ellipsoidal inclusion 
 
Considering the volume V of composite materials, their total 
strain U can be expressed by (Budiansky, 1965) as  
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Where (I, M) indicate inclusions and matrix respectively; (E,
) represent Young's modulus and Poisson's ratio, fＩ is the first 

Ｉ kind of volume percentage.  
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 is the average strain in the Ith inclusion 

andV f VＩ Ｉ . 

 
The energy equation can be written in simple 
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where  tr �  is the trace tensorial operator, the index I is 

associated with the inclusion phase, and ( , )e eK , ( , )KＭ Ｍ  

and ( , )KＩ Ｉ  are the shear and bulk moduli of the effective 

medium, matrix and inclusion, respectively. The axisymmetric 
(A) and hydrostatic (H) remote loadings are defined, in the 
macroscopic axes  ( )OXYZ  (Fig. 2), by 
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The average of  I H
tr  

 
 over the inclusion orientations is 

trivially calculated, since both the trace operator and the 

hydrostatic loading (H) are independent on  ,  .  
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Fig. 2. Oblate spheroidal inclusion oriented at arbitrary angles 
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To integrate the volume average strain  AI

ZZ  over the 

inclusion orientations, we have 
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Then, the dependence of the volume average strain on the 
inclusion orientation is obtained through the decomposition of 
axisymmetric load (A) in the inclusion coordinate. Taking the 
symmetries of the problem into account, the final result is 
given by 
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Using (2), (3), (6) and (8), the energy equivalence equation is 
then given in the inclusion coordinate (Oxyz) by 
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As noted by Huang et al. (Huang et al., 1995), the energy 
equivalence equations (9), (10) and (1) are exact. An 
approximate description of a single inclusion in the 
heterogeneous material is then adopted and the volume 
average strains are evaluated by solving the associated 
localization problems. Here, we choose to adapt the classical 
three phase model to materials containing randomly oriented 
spheroidal inclusions.  
 
Computation of the inclusion volume average strains 
 

 
 

Fig. 3. Representative volume element of the material consisting 
of an ellipsoidal duplex inclusion 

 
Figure 3 shows the representative volume element of the three-
phase ellipsoidal inclusion. Ellipsoidal inclusion locates within 
L1, the part between L1 and L2 is the matrix, and the 
outermost part is equivalent medium. L1 and L2 are confocal 
rotational ellipsoids. The volume ratio of ellipsoid L1 and L2 
is the percent of the inclusions fＩ. According to the previous 

analysis, the solution of balance equation expressed in the 
displacement component can be represented in four harmonic 
potential functions, in order to be more clearly, we repeat by 
(Ou et al., 2009) as follows 
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In the ellipsoidal coordinate system, the harmonic potential 
functions are expanded in series of Legendre functions. 
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For the different loading, the specific displacement potential 
functions of each part are different, e.g. 
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In the case of the loading (zz), the analytic displacement 
potential functions are: 
 
In the inclusion, 
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Within the matrix, 
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Within the equivalent medium, 
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Substituting the displacement potential functions of inclusions, 
matrix and equivalent medium under different loading into the 
equation (11), and in the light of constitute laws and the 
geometric equation, the displacement and stress with 
undetermined coefficients are obtained. Then by substitution 
of those into the following boundary conditions (25) to (29), 
the undetermined coefficients in the displacement potential 
function are obtained. And displacement field under the 
different loading are obtained. In the prolate spheroidal 
system, the boundary conditions equation on the L1 and L2 
interface read. 
 
In the interface L1, 
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In the interface L2, 
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Finally, substituting the strains of the inclusion into equations 
(9) and (10), one obtains the equivalent moduli. 

 
RESULTS AND DISCUSSION 
 
In what follows, the numerical results of equivalent modulus 
of composite with the nano-ellipsoidal inclusions are given. In 

numerical calculations, let 
a

s
b

  = 1/2 for ellipsoidal inclusion 

and s = 1 for spherical inclusion, and the different volume 

percentages (fI =0.1, 0.3, 0.5), and assume 0.3I M   and 
I M   . For simplicity, the effect of surface elastic 

constants limited to  s Mb  on the effective moduli is 

studied. Figure 4 and figure 5 show that the equivalent shear 
modulus and bulk modulus of the composites vary with the 
surface elastic constant under the different volume percentages 
of the soft and hard inclusions. s=0.5 indicates the ratio of the 
short half axis to the major half axis of the ellipsoid. 

 
 

Fig. 4. Relationship between equivalent shear modulus and 
surface elastic constant 

 

 
 

Fig. 5. Relationship between equivalent bulk modulus and surface 
elastic constant 

 
It can be seen that the relationship between equivalent 

modulus and  s Mb   is a nonlinear. The effective modulus 

are decreasing with the  s Mb  for hard inclusions, and the 

change is violent when the  s Mb  <0.6. The equivalent 

modulus are gradually increasing with the  s Mb  for soft 

inclusions, and the change is less evident when the  s Mb 

<0.6. Simultaneously, the higher is volume percent of hard 
inclusions, the higher is the equivalent moduli. For soft 
inclusions, the results are inverse. Further analysis shows that, 

if a material s M   is fixed, these equivalent modulus are 

inversely proportional to the quantity b representing the size of 
the inclusions. It is obvious that the effect of size needs to be 
considered under the nano-mechanics. The relationship 
between equivalent moduli and the surface elastic constant 
under the different volume percentages of soft inclusions and 
hard inclusions are shown in figure 6 and figure 7, 
respectively. s=1 indicates that the spheroidal inclusions 
embedded in the composite. The results show that the 
equivalent bulk modulus and the equivalent shear modulus are 
numerical different from those embedded in nano-ellipsoidal 
inclusions, and the variable trend with the surface elastic 
constant is roughly the same.  
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Fig. 6. Relationship between equivalent shear modulus and 
surface elastic constant 

 
 

Fig.7. Relationship between equivalent bulk modulus and surface 
elastic constant 

 
Conclusions 
 
Under the consideration of interface effect, the paper is the 
successful application of three-phase ellipsoid model to 
estimate the equivalent moduli of composites embedded in the 
random distribution of rotating ellipsoid inclusions. The 

effective modulus depend on material intrinsic length ( s M  ) 

and characteristic size of ellipsoid (b, s). 
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