

Available Online at http://www.journalajst.com

ASIAN JOURNAL OF SCIENCE AND TECHNOLOGY

Asian Journal of Science and Technology Vol. 08, Issue, 03, pp.4394-4398, March, 2017

RESEARCH ARTICLE

FUNCTIONALIZED GRAPHENE-MnO $_2$ NANOCOMPOSITE IN FUEL CELL APPLICATIONS

*Dipanwita Majumdar

Department of Chemistry, Barasat Govt. College, Barasat, Kolkata-700124, West Bengal, India

ARTICLE INFO	ABSTRACT
Article History: Received 25 th December, 2016 Received in revised form 05 th January, 2017 Accepted 27 th February, 2017 Published online 31 st March, 2017	Functionalized Graphene-MnO ₂ composites have been established to be a very proficient and promising electro-catalyst for oxygen reduction reaction (ORR), an essential step, in fuel cells applications. The composite has several advantages of easy fabrication, low production cost, superior charge transport and electrocatalytic properties that would ideally meet the urgent demands of green energy. This brief overview categorically narrates the basic requirements, recent progresses and achievements on the fabrication and performances of the composite as ORR catalyst. A concise outline on the challenges and
Key words:	future prospects of this research field has also been highlighted.
Graphene-manganese dioxide, Nanocomposite	
Oxygen Reduction Reaction (ORR),	

Copyright©2017, Dipanwita Majumdar. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

Electro-catalysis.

Ever rising demands for renewable and sustainable energy has highly encouraged extensive research on energy conversion and storage systems that are efficient, cost effective and environmentally friendly. Among the various promising energy conversion technologies currently available, "fuel cell", owing to its eco-friendliness, production-economy, promising efficiency, has drawn a great deal of attention in the recent past in terms of both fundamentals as well as applications (Carrette et al., 2000; Sharaf, 2014). In a fuel cell device, generally a substrate, (such as, di-hydrogen, methanol, and ethanol, alcohols, easily oxidizable organic compounds, etc) used as fuel, is electrochemically oxidized at the anode, and the released electrons are transferred to cathode where oxygen is electro-chemically reduced to water/ hydroxide ion. The oxygen reduction reaction (ORR) consisting of 4-e transfer process at the cathode has very sluggish reaction kinetics; which limits the cell performance to great extent. Accordingly, superior materials for electrocatalyses are required to facilitate the ORR (Song, 2008). Consequently, the electrocatalyst material for the ORR is a vital component for fuel cell and plays a key role in determining the performance of fuel cells, such as power output, open circuit, energy efficiency, and longevity (Wang, 2005; Shui et al, 2015). Advanced ORR kinetics urges for electrode materials possessing outstanding

*Corresponding author: Dipanwita Majumdar,

Department of Chemistry, Barasat Govt. College, Barasat, Kolkata-700124, West Bengal, India.

features, that include - resourceful storage, abundant mesoporous variety, long durability, attractive as well as facial chemistry, wide potential window and eco-friendliness, are the crucial points required to achieve improved fuel cell performances (Dai et al., 2015). Till date, electrode materials for ORR embrace a variety of metals like platinum, silver, cobalt, iridium, rhodium, etc (Nie et al, 2015; Wu et al., 2014; Yasuda et al., 2006); metal oxides like iron oxides, cobalt oxides and sulfides (Gasteiger et al., 2005; Singh et al, 2012; Suntivich et al 2013; Liang et al., 2011) with specific shapes, bimetallic/ intermetallic compositions (Wang et al., 2010; Kuttiviel et al., 2012), and core-shell nanostructures (Zhang et al., 2012; Chaudhuri and Paria, 2012), all of which have acquired some achievements in optimizing catalytic activity for ORR. Nonetheless serious limitations, such as high production cost, crossover effects and CO poisoning, side reactions and useless biproducts, are unavoidable in present cases which certainly lead to electrode material modifications to attain higher electrocatalytic efficiencies (Du et al., 2007; Birry et al., 2010). In the recent past, graphene-basedmaterials have been extensively fabricated to investigate their efficiencies as electrocatalysts for ORRs (Sun et al., 2015; Wu et al., 2012; Navaee and Salimi, 2015). Graphene-based nanocomposites are used as electrode materials for ORR, owing to the following advantages, namely:

• Flexible graphene nanosheets provide large surface area for accommodation and support to the anchored materials-metals/metal oxides, preventing their agglomeration;

- Better superficial characteristics of graphene owing to large surface area increase the solid-air contact efficiency, resulting in a large amount of oxygen adsorption on graphene layers;
- Superior electronic structure of graphene reinforcing faster electron transfer rate
- Structural defects on surfaces provide larger number of active sites for the functionalization of active groups promoting electrocatalytic ORR (Wang *et al.*, 2014; Li, 2008; Zhu *et al.*, 2014).

Recent reports on this research field include use of various transition metal oxides anchored onto graphene surface. one morphologies Various such as dimensional nanorods/tubes/fibres, two dimensional nanosheets/ nanoplates as well as three dimensional hollow nanostructures of the supported metal oxides on graphene have also been found to exhibit impressive results (Wang, et al., 2009; Changyuan Hu et al., 2013; Zhang et al., 2011). Among the several transition metal oxides, oxides of manganese are particularly more popular due to its easy availability, low production cost and superior redox behavior. The family of oxides of manganese includes complex members such as MnO₂, Mn₂O₃, and Mn₃O₄ (Lee et al., 2011). Each of these oxides display an extensive range of crystallographic structures and morphologies (Lee et al., 2011; Cheng et al., 2006; Chen., 2012; Tang et al., 2014; Zhang et al., 2013; Sun et al., 2013). They have different extent of contributions to various catalytic activities. As far as ORR is concerned, MnO₂, amongst these various manganese oxides, has been found to exhibit impressive and improved catalytic activity in ORR. It is well known that MnO₂ can form many polymorphs such as α , β , γ , δ - types, offering characteristic properties and extensive applications. It acts as a promising material for due to its easy preparation, superior electrochemical performance, environmental friendliness, and lower production cost (Ali et al, 2014; Zhang et al 2013; Cheng et al., 2006; Hu et al., 2015). Over the past, various nanostructured MnO₂, including dendritic clusters. nanocrystals with different morphologies including nanospheres, nanowires/fibres, nanotubes/rods, nanobelts, and nanoflowers, have been successfully synthesized and characterized in details (Tang et al., 2014; Sun et al., 2013; Ali et al., 2014; Zhang et al., 2013). Lately, our group also experienced superior ORR as well as OER activities from microwave-synthesized Mn₂O₃ nano-balls (Ghosh et al., 2013) Nevertheless, pure transition metal oxide electrodes have suffered largely from poor recyclability, low conductivity leading to questionable performances - mainly attributed to large morphological breakdown/ degradation during the repeated cycles. These problems have been successfully addressed to appreciable extent by anchoring them to conducting 2D substrates like graphene.

Graphene– MnO_2 composite has the potential to act as an effective ORR catalyst. This is ensured based on the following rationales: firstly, low price, ecofriendliness and intrinsic activity towards ORR. Secondly, high conducting graphene sheets facilitate rapid electron transport for ORR. Thirdly, greater dispersion of MnO_2 clusters on graphene sheets providing better electro catalytic performance. Finally, direct growth of MnO_2 nanostructures on graphene sheets without disrupting the conductive network would significantly reduce the contact resistance usually caused by conventional carbon-supported catalysts via simple absorption and/or mixing.

Therefore, the synergistic effect of MnO_2 clusters and graphene sheets is expected to offer superior catalytic activities in comparison with the pristine/physical mixing of the components (Sun *et al.*, 2015; Zhang *et al.*, 2013). As far as the chemistry of ORR mechanism is concerned, the electrode material catalyzes reduction of O_2 to HO_2^- as described in equation (1), the latter ultimately undergoes electrochemical transition to OH⁻ (equation (2)) (Verma *et al.*, 2010).

$$O_2(g) + H_2O(l) + 2e \rightarrow HO_2^{-}(l) + OH^{-}(l)$$
(1)

$$HO_2^{-}(l) + H_2O(l) + 2e \rightarrow 3 \text{ OH}^{-}(l) \dots (2)$$

It is reported that manganese dioxide adsorbs di-oxygen which is then reduced to HO_2^- as shown in the following equations: (Gao *et al*, 2014),

$$MnOOH(s) + O_2(g) \rightarrow MnOOH^{\dots}O_2(s) \dots (3)$$

 $MnO_{2}(s) + H_{2}O(l) + e \rightarrow MnOOH(s) + OH^{-}(l) \dots (4)$

Initially, Mn(IV) gets electrochemically reduced to Mn(III) in alkaline medium and becomes active to adsorb di-oxygen molecule. The adsorbed di-oxygen molecule acts as electron acceptor and accepts an electron from Mn(III) to form Mn(IV) and HO_2^- respectively, the later ultimately converted to hydroxyl ion following equation (2). The exfoliated functionalized graphene sheets offer more exposure to such active sites for reduction and thus exhibit superior ORR activity. This is shown schematically in Figure-1.

Literature survey shows that few years back, microwaveirradiated synthesis process of MnO₂ particles (size of $5\sim10$ nm) were uniformly coated on the surface of graphene nanosheets, displayed a distinctive oxygen reduction peak at -0.43 V in alkaline solution, which is more positive than that of pristine-MnO₂ (-0.71 V) and even better than that of Pt/C (-0.44 V), representing that the nanohybrid acts as a significant ORR accelerator (Wen *et al.*, 2012). Yang et al. used MnO₂-graphene nanosheets as the air cathode in lithium-air cells and obtained a discharge capacity much higher than pure graphene nanosheets (GNS) catalyst (Yang *et al.*, 2012). G.kumar et al. used nanotubular MnO₂-GO composites as the air cathode in MFC and obtained a power density higher than the pure MnO₂ nanorods and MnO₂ nanotubes (Gnanakumar *et al.*, 2014).

The growth of hollow structured tunnels of α -MnO₂ nanotubes preferentially occurred along the [001] direction with increased surface area showing greater accommodating capability for molecular oxygen, attributing to outstanding catalytic activity towards the oxygen reduction reaction over the other solid structures. Qian et al. also obtained larger voltammetric currents for ORR with MnO₂/reduced graphene oxide (RGO) composites compared to pure RGO in alkaline solution and also showed that the MnO₂-RGO composite proceeds with a 4-electron reduction pathway for the ORR with higher activity (Qian and Lu, 2011). Basirun group reported graphene oxide electrocatalyst on MnO₂ air cathode as an efficient electron pump for enhanced oxygen reduction in alkaline solution where GO and ERGO accelerate the process of electron donation to the MnO₂ as well as to adsorbed oxygen atoms (Basirun et al., 2015). To increase the solubility of graphene for processing purposes as well as improve the charge transfer rate, many researchers proposed the usage of graphene oxide or/and reduced graphene oxide as supporting substrate instead of pure graphene. Current reports show that MnO₂/reduced graphene oxide (MnO₂/rGO) composites were synthesized by a facile chemical reduction method assisted by poly(sodium 4-styrene sulfonate) (Sun et al., 2015). There are two functional aspects used in this synthesis. Firstly to increase the solubility of graphene in aqueous solutions thereby using the modification- reduced graphene oxide (rGO); and secondly, to tether Mn^{2+} precursor onto graphene. Polymer-assisted synthetic strategy was also adopted to fabricate 3D MnO₂/rGO nanocomposites, which displayed good electrocatalytic activity towards four-electron reduction of oxygen.

Recently, the influence of different shapes of MnO₂ decorated on functionalized graphene on ORR in a systematic approach has been explored (D Majumdar, 2016). Lately, threedimensional flower-like manganese oxide was directly grown on reduced graphene oxide (RGO) sheets via a chelationmediated method, exhibiting appreciable catalytic activity, higher selectivity and better stability towards oxygen reduction reaction (Zhang et al, 2013) They showed that hierarchical structure generated from 3D MnO2 clusters and RGO thin sheets facilitate mass transfer of oxygen molecules that improves oxygen reduction synergistically. Moreover, RGO-MnO₂ composite is unable to catalyze the oxidation of the crossover methanol that otherwise, reduces the oxygen reduction current, leading to higher selectivity toward ORR. Few years back, S. Khilari group developed graphene supported α -MnO₂ nanotubes with minimum charge transfer resistance values facilitating enhanced charge transport, which in turn increases the oxygen reduction rate (Khilari et al., 2013). Another group reported a new electrocatalyst based on a graphene oxide-intercalated layered manganese oxide, prepared by inserting graphene oxide sheets within the interlayers of protonated layered manganese oxides. They stated that the aforesaid electro-catalyst had more accessible Mn(III)/Mn(IV) sites which eventually resulted in superior ORR activity in alkaline medium (Park et al., 2014). MnO₂ nanotubes are often mixed with metal like Ag, Pt with graphene is applied as the ORR catalyst in proton exchange membrane fuel cell, shown in Figure 2. (Liu et al, 2015) The of introduction metal nanoparticles between the MnO₂ nanoparticles on graphene sheets can significantly improve the catalytic activation, through increase in charge transportation, creating abundant active sites through defects

for di-oxygen adsorption as well as HO_2^- reduction during the ORR process (Divya and Ramaprabhu, 2013; Liu, 2015). MnO₂ nanostructures grown directly onto Nitrogen-Doped

Figure 2. (a) CV of the Ag–MnO₂/graphene and Pt/C (the inset of figure a) electrode at scan rate of 5 mVs⁻¹ with the rotation rate at 1200 rpm in a 0.1 M KOH solution saturated with N₂ and O₂ respectively (b) and (c) CVs of the different electrode at scan rate of 5mVs⁻¹ with the rotation rate at 1200 rpm in a 0.1 MKOH solution saturated with N₂ and O₂ of MnO₂/graphene and Ag/graphene composites respectively. [Ref: RSC Adv., 2015, 5, 15627–15633]

Figure 3. (a) CV curves of the MnO_2/N -HGS electrode at 50 mVs⁻¹ in 0.1 M KOH solutions saturated with N_2 or O_2 . (b) LSV curves of the HGS, N-HGS, MnO_2/HGS , MnO_2/N -HGS, and Pt/C catalysts in 0.1 M KOH saturated with O_2 at 10 mVs⁻¹ at 1600 rpm. [Ref: ACS Appl. Mater. Interfaces 2016, 8, 35264–35269]

Graphene displayed high ORR activity with more positive onset potential, larger current density and ideal stability, owing to synergistic interactions between MnO₂ and the doped carbon nanomaterials, Figure 3 (Yu et al., 2016). Nitrogendoped thermally exfoliated graphene synthesized combined with α -MnO₂ nanotubes having larger surface area and higher electrical conductivity demonstrated excellent activity in aprotic non-aqueous electrolyte (Gautam et al., 2016; Park et al., 2013). Thus, above studies infer that the role of Graphene-MnO₂ composites in ORR is still in a very promising stage and the challenges still remain to be realized in a scientific and technical way. The fundamental mechanism of the kinetic process in these graphene-based nanocomposites is yet to be fully understood/explored, especially with respect to their surface functionalities/defects and hierarchical electrode structures. More systematic exploration and deeper understanding of the different catalytic mechanisms of these

types of graphene-based materials for ORR are required for material design and device performance optimum optimization. The durability and stability of these nanocomposites, too, of course, are of crucial importance for their practical application in real fuel cells. Obviously, the development of facile, green, cost-effectiveness, and controllable preparation method is still a significant issue, because the current assembly process requires rigorous reaction conditions (such as high temperature or pressure) and/or involves tedious procedures, which complicates its synthetic methodology. Consequently, much further research is necessary to understand the ultimate objective of final industrial implementation, with special priority to large scale, low cost, and simple production of these graphene-based materials with high catalytic activity and practical durability for ORR. This short review, nonetheless, is anticipated to encourage more future opportunities to achieve the aim and promote sustainability in this field of research.

Acknowledgement

DM acknowledges UGC, India for funding minor research project [F. PSW-145/13-14 (ERO) dated 18th March 2014]. DM is also thankful to IACS, and JU for the necessary infrastructural facilities provided for free access to various journals. DM acknowledges Barasat Govt. College for inspiring research activities. Dm acknowledges American Chemical Society Publications, Elsevier Publications and Royal Society of Chemistry Publications, for granting copy right permissions to reproduce the figures in the current review work.

REFERENCES

- Ali G.A.M., Tan L.L., Jose R., Yusoff M. M., Chong K. F. 2014. Electrochemical performance studies of MnO2 nanoflowers recovered from spent battery Materials Research Bulletin, 60, pp. 5–9.
- Bashyam, R., Zelenay, P. 2006. A class of non-precious metal composite catalysts for fuel cells. *Nature*, 443, pp. 63–66.
- Basirun W J, Sookhakian M, Baradaran S, Endut Z, Mahmoudian M R, Ebadi M, Yousefi R, Ghadimi H, Ahmed S, 2015. Graphene oxide electrocatalyst on MnO2 air cathode as an efficient electron pump for enhanced oxygen reduction in alkaline solution Sci. Reports 5, pp. 9108 (1-7).
- Birry, L., Zagal, J. H., Dodelet, J.P. 2010. Does CO poison Fe- based catalysts for ORR? Electrochem. Commun. 12(5), pp. 628–631.
- Carrette, L, Friedrich, K A, Stimming, U, 2000. Fuel cells: principles, types, fuels, and applications. *ChemPhysChem*. 1(4), pp162-193.
- Chaudhuri, R. G., Paria, S. 2012. Core/Shell Nanoparticles: Classes, Properties, Synthesis Mechanisms, Characterization, and Applications Chem. Rev. 112(4), pp. 2373-2433.
- Chen, C., W. Fu, C. Yu, 2012. A facile one-step hydrothermal method to produce α-MnO2/graphene sheet composites and its electrochemical properties. Materials Letters, 82, 133-136.
- Cheng F. Y., Su Y., Liang J., Tao Z. L., 2010. MnO2-Based Nanostructures as Catalysts for Electrochemical Oxygen Reduction in Alkaline Media. Chem. Mater., 22, pp. 898– 905.

- Cheng, F, Zhao, J, Song, W, Li, C., Ma, H., Chen, J, Shen, P., 2006. Facile Controlled Synthesis of MnO2 Nanostructures of Novel Shapes and Their Application in Batteries Inorg Chem. 45(5), pp. 2038-2044.
- Dai, L., Xue, Y., Qu, L., Choi, H.J., Baek, J.B. 2015. Metalfree catalysts for oxygen reduction reaction. *Chem. Rev.* 115 (11), pp 4823–4892.
- Divya P., Ramaprabhu S., 2013. MnO2 nanotube-Pt/graphene mixture as an ORR catalyst for proton exchange membrane fuel cell AIP Conference Proceedings; 1512 (1), pp. 370
- Du C.Y., Zhao T.S., Yang W.W., 2007. Effect of methanol crossover on the cathode behavior of a DMFC: A half-cell investigation Electrochimica Acta, 52, pp. 5266–5271.
- Gao H. L., Li Z. Y. , Xue Q., 2014. Synthesis of carbon microspheres loaded with manganese oxide as air cathode in alkaline media. J. Power Sources, 248, pp. 565–569.
- Gasteiger, H. A., Kocha, S. S., Sompalli, B., F. T. Wagner, 2005. "Activity Benchmarks and Requirements for Pt, Pt-Alloy, and Non-Pt Oxygen Reduction Catalysts for PEMFCs *Appl. Catal. B: Environ.* 56, pp 9–35.
- Gautam R. K., Bhattacharjee H., Mohan S. V., Verma A. 2016. Nitrogen doped graphene supported α-MnO2nanorods for efficient ORR in a microbial fuel cell RSC Adv. 6, pp. 110091-110101.
- Ghosh S, Kar P, Bhandary N, Basu S., Sardar S, Maiyalagan T., Majumdar D., Bhattacharya S., Bhaumik A., Lemmens P., Pal S., 2016. Microwave-assisted synthesis of porous Mn2O3 nanoballs as bifunctional electrocatalyst for oxygen reduction and evolution reaction. Catal. Sci. Technol. 6, pp. 1417-1429.
- Gnanakumar G., Awan Z., Nahm K. S., Xavier J. S., 2014. Nanotubular MnO2/graphene oxide composites for the application of open air-breathing cathode microbial fuel cells Biosens. Bioelectronics 53, pp. 528–534.
- Khilari S., Pandit S., Ghangrekar M. M., Das D, Pradhan D., 2013. Graphene supported α-MnO2 nanotubes as a cathode catalyst for improved power generation and wastewater treatment in single-chambered microbial fuel cells. RSC Advances.3, pp. 7902-7911.
- Kuttiyiel, K. A., Sasaki, K., Choi, Y. M., Su, D., Liu, P., Adzic, R. R., 2012. Stabilization of Pt monolayer catalysts under harsh conditions of fuel cells Energy Environ. Sci., 5(1), pp. 5297–5304.
- Lee, J. S., Park, G. S., Lee, H. I., Kim, S. T., Cao, R., Liu, M., Cho, J., 2011. Ketjenblack Carbon Supported Amorphous Manganese Oxides Nanowires as Highly Efficient Electrocatalyst for Oxygen Reduction Reaction in Alkaline Solutions Nano Lett., 11, pp. 5362–5366.
- Li, D., Kaner, R. B., 2008. Graphene Based Materials Science, 320 (5880), pp. 1170-1171
- Liang, Y., Li, Y., Wang, H., Zhou, J., Wang, J., Regier, T. Dai, H. 2011. Co₃O₄ nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. *Nat. Mater.* 10, pp. 780–786.
- Liu S, Qin X., 2015. Preparation of a Ag–MnO2/graphene composite for the oxygen reduction reaction in alkaline solution RSC Adv., 5, pp. 15627-15633.
- Majumdar D. 2015-2016. Graphene-MnO2 composite as Electrocatalyst for Oxygen Reduction Reactions Aureole, An Academic Journal, 6&7(1), pp. 31-37. ISSN: 0976 – 9625;
- Navaee, A., Salimi, A. 2015. Efficient amine functionalization of graphene oxide through the Bucherer reaction: an

extraordinary metal-free electrocatalyst for the oxygen reduction reaction RSC Adv., 5, pp. 59874-59880.

- Nie Y., Li L., Wei Z. 2015. Recent advancements in Pt and Ptfree catalysts for oxygen reduction reaction. *Chem. Soc. Rev.*, 44, pp 2168-2201.
- Park H W, Lee D U, Nazar L F., Chen Z., 2013. Oxygen Reduction Reaction Using MnO2 Nanotubes/Nitrogen-Doped Exfoliated Graphene Hybrid Catalyst for Li-O2 Battery Applications J. Electrochem. Soc. 160(2), pp. A344-A350.
- Park H.Y., Shin T.J., Joh H. I., Jang J. H., Ahn D., Yoo S J, 2014. Graphene-oxide-intercalated layered manganese oxides as an efficient oxygen reduction reaction catalyst in alkaline media Electrochem. Commun., 41, pp. 35–38.
- Qian Y., Lu S., Gao F. , 2011. Synthesis of manganese dioxide/reduced graphene oxide composites with excellent electrocatalytic activity toward reduction of oxygen Mater. Lett. 65, pp. 56–58.
- Sharaf, O. Z., Orhan, M. F. 2014. An overview of fuel cell technology: Fundamentals and applications *Renewable and Sustainable Energy Reviews*, 32, pp 810-853.
- Shui, J., Wang, M., Du, F. and Dai, L., 2015. N-doped carbon nanomaterials are durable catalysts for oxygen reduction reaction in acidic fuel cells *RSc. Advances* 1(1), pp e1400129
- Singh, P., Buttry, D. A. 2012. Comparison of Oxygen Reduction Reaction at Silver Nanoparticles and Polycrystalline Silver Electrodes in Alkaline Solution J. *Phys. Chem. C*, 116 (19), pp.10656–10663.
- Song, C., Zhang, J. 2008. Electrocatalytic Oxygen Reduction Reaction (Chapter-2) in *PEM Fuel Cell Electrocatalysts* and Catalyst Layers, (Zhang, Jiujun (Ed.)) pp 89-134, Springer (London).[doi: 10.1007/978-1-84800-936-3 2].
- Sun Z, Firdoz S, Yap EY, Li L, Lu X, 2013. Hierarchically structured MnO2 nanowires supported on hollow Ni dendrites for high-performance supercapacitors Nanoscale. , 5(10), pp. 4379-4387.
- Sun, M., Liu, H, Liu, Y, Qu, J, Li, J., 2015. Graphene-based transition metal oxide nanocomposites for the oxygen reduction reaction Nanoscale 7(4), pp.1250-1269.
- Suntivich, J., Shao, Y. 2013. Trend in Oxygen Reduction Reaction on Transition Metal Oxide Surfaces *ECS Trans.* 58(1), pp.715-726.
- Tang Q., Jiang L., Liu J., Wang S., Sun G., 2014. Effect of Surface Manganese Valence of Manganese Oxides on the Activity of the Oxygen Reduction Reaction in Alkaline Media ACS Catal., 4, pp. 457–463.
- Verma A, Jha A. K., Basu S., 2005. Manganese dioxide as a cathode catalyst for a direct alcohol or sodium borohydride fuel cell with a flowing alkaline electrolyte. J. Power Sources, 141, pp. 30–34.
- Wang, B. 2005. Recent development of non-platinum catalysts for oxygen reduction reaction J. Power Resources. 152, pp1-15.
- Wang, D, Choi, D, Li, J, Yang, Z, Nie, Z., Kou, R, Hu, D., Wang, C., Saraf, L V, Zhang, J., Aksay, I A, Liu, J. 2009. Self-assembled TiO2-graphene hybrid nanostructures for enhanced Li-ion insertion. ACS Nano., 3, pp. 907-914.

- Wang, G., Wu, H., Wexler, D., Liu, H., Savadogo, O. 2010. Ni@Pt core-shell nanoparticles with enhanced catalytic activity for oxygen reduction reaction *J. Alloys and Compounds*, 503 (1), pp. L1–L4.
- Wang, X., Liu, B., Lu, Q., Qu, Q. 2014. Graphene-based materials: Fabrication and application for adsorption in analytical chemistry. *J Chromatography A*, 1362, pp. 1–15.
- Wen Q., Wang S., Yan J., Cong L., Pan Z., Ren Y., Fan Z., 2012. MnO2–graphene hybrid as an alternative cathodic catalyst to platinum in microbial fuel cells. J. Power Sources. 216, pp. 187–191.
- Wu, J., Yang, S., Yang, H. 2014. Facet-Controlled Metal Alloy Electrocatalysts for Oxygen Reduction Reaction: Unconventional Post Treatment of Pt₃Ni Octahedral Catalysts for Enhanced Activity ECS Trans. 61(31), pp 25-34.
- Wu, Z.S., Yang, S., Sun, Y., Parvez, K., Feng, X., Müllen, K. 2012. 3D Nitrogen-Doped Graphene Aerogel-Supported Fe3O4 Nanoparticles as Efficient Electrocatalysts for the Oxygen Reduction Reaction J Am. Chem.Soc. 134(22), pp. 9082–9085.
- Xu, H., Qu, Z., Zhao, S., Mei, J., Quan, F., Yan, N. 2015. Different crystal-forms of one-dimensional MnO2 nanomaterials for the catalytic oxidation and adsorption of elemental mercury. *Journal of Hazardous Materials*, 299, pp.86-93.
- Yang Y., Shi M., Li Y. S., Fu Z.-W, 2012. MnO2-Graphene Composite Air Electrode for Rechargeable Li-Air Batteries. J. Electrochem. Soc. 159(12) , pp. A1917– A1921.
- Yasuda, K., Taniguchi, A., Akita, T., Ioroi, T., Siroma, Z. 2006. Platinum dissolution and deposition in the polymer electrolyte membrane of PEM fuel cell as studied by potential cycling. *Phys. Chem. Chem. Phys.* 8, pp746 – 752.
- Yu Q., Xu J., Wu C., Zhang J., Guan L. 2016. MnO2 Nanofilms on Nitrogen-Doped Hollow Graphene Spheres as a High-Performance Electrocatalyst for Oxygen Reduction Reaction ACS Appl. Mater. Interfaces, 2016, 8 (51), pp. 35264–35269.
- Zhang J., Guo C., Zhang L. Li C. M., 2013. Direct growth of flower-like manganese oxide on reduced graphene oxide towards efficient oxygen reduction reaction Chem. Commun., 49, pp. 6334-6336.
- Zhang, H., Watanabe, T., Okumura, M., Haruta, M., Toshima, N. 2012. Catalytically highly active top gold atom on palladium nanocluster. Nat. Mater. 11, pp. 49–52.
- Zhang, J. T., Xiong, Z. G., Zhao, X. S. 2011. Graphenemetal-oxide composites for the degradation of dyes under visible light irradiation. *J Mater Chem.*, 21, 3634-3640.
- Zhang, X., Yu, P., Zhang, H., Zhang, D, Sun X, Ma Y., 2013. Rapid hydrothermal synthesis of hierarchical nanostructures assembled from ultrathin birnessite-type MnO2 nanosheets for supercapacitor applications. Electrochemica Acta, 89(1), pp. 523–529.
- Zhu, J., Yang, D., Yin, Z., Yan, Q., Zhang, H. 2014. Graphene and graphene-based materials for energy storage applications. Small, 2014, 10(17) pp. 3480–3498.