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INTRODUCTION

Diophantine equations are numerously rich because of its variety. Diophantine problems were first introduced by Diophantus of
Alexandria who studied this topic in the Algebra. The theory of Diophantine equations is a treasure house in which the search for
many hidden relation and properties among numbers from a treasure hunt. In fact Diophantine problems dominated most of the
celebrated unsolved mathematical problems. Certain Diophantine problems come from physical problems or from immediate
Mathematical generalizations and others come from geometry in a variety of ways. Certain Diophantine problems are neither
trivial nor difficult to analyse (James Matteson, 1888; Titu andreescu and Dorin Andrica, 2002). Also, one may refer (Dickson,
2005; Carmichael, 1959; Mordell, 1969; John et al., 1995; Gopalan et al., 2012, 2013 & 2015). In this paper, We search for non-

zero distinct integer triple (a ,b, c) such that each of the expressions a +b, a+c, b+c, isacubical integer.

Method of analysis

Let (a ,b, c) be three non —zero distinct integers such that

a+b=a’ (1)
a+c=f @)
brc=y’ 3)
Aa+b+c)=(a+p+y)s’ )

Solving the system of equations from (1) to (3), we have

a=%(a3+ﬁ3—)/3) (5)
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b:%( 3+y3—ﬂ3) (6)

c=%(ﬂ3+73—a3) (7
Adding (5), (6) and (7), we get

2(a+b+c)=(a3+ﬂ3+y3) (®)
In view of (4) and (8), we obtain

(a3+ﬂ3+y3)=(a+ﬂ+y)§2 )
Introducing the linear transformations

a=p+q,f=p—q.,y=p (10)
where P and ¢ are non-zero parameters in (9), we get

P 424 =8 (1

By applying four different patterns of solutions to (1), the process of finding triple (a ,b, c) such that the sum of any of them is a
cubical integer is explained below.

Case i
Consider the general solution to (11) as p = 2m* —n*, q=2mn, o= 2m® +n’ (12)

In view of (12) and (10), we get

2

a=2m2—n2+2mn,ﬂ=2m2—n2—2mn,y=2m2—n (13)

Substituting (13) in (5),(6) and (7), we obtain

a :%:(2m2 —n’ —i—2mn)3 +(2m2 —n’ —Zmn)3 —(2m2 —n2)3]
b :%:(2’%2 -n’ +2mn)3 +(2m2 —n2)3 —(Zm2 -n’ —2mn)3]
c :%:(Zmz -n’ —Zmn)3 +(2m2 —n2)3 —(Zm2 -n’ —i-Zmn)3 ]

We note that the triple (a ,b, c) is integer when m is arbitrary and 7 is even.

choosen =2N

Thus,

a :4_(m2 —2N? +2mN)3 +(m2 —2N? —2mN)3 —(m2 —2N2)3J
b=

3

alm> 287 +2mNY +(m® = 287F —(m? —28° — 2N} |

c:4_(m2 —2N? —2mN)3+(m2 —2N2)3 —(m2 —2N? +2mN)
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Some numerical examples are presented below:

m-n a b ¢ (a+b) (b+c) (c+a)
2 1 800 928 — 864 (12 3 (4)3 (_ 4)3
1 2 -—4060 3844 — 6588 (-6) (-14) (-22)
3 2 3460 14116 —14108 (26)3 (2)3 (_ 22)3
4 3 -27680 112864 —-112928 (44)3 (_ 4)3 (52)3
7 4 1299140 1812996 —1773692 (146)3 (34)3 (_ 78)3
Case ii
Consider the general solution to (11) as
p:m2—2112,q:211171,5:m2+2n2 (14)
In view of (14) and (10), we get
a=m’=2n"+2mn, f=m’>-2n" =2mn ,A=m" -2n’ (15)

Substituting (15) in (5), (6) and (7), we obtain

a :%:(mz -2n* —i-Zmn)3 +(m2 -2n® —Zmn)3 —(m2 —2n2)3]
b :%:(mz —2n? +2mn)3 +(m2 —2112)3 —(m2 —2n? —2mn)3]
c :%:(mz —2n? —2mn)3 +(m2 —2112)3 —(m2 —2n’ +2mn)3]

Since our interest is to find the integer triple, we observe that the triple (a ,b, c) is integer when 7 is arbitrary and m is even.
choose m = 2M

Therefore,
a :4_(2M2 -n’ +2Mn)3 +(2M2 -n’ +2Mn)3 —(ZM2 —n2)3J

3

b=42M> —n* +2Mn) +(2M* —n*) —(2M* —n* —2Mn)

|
'

_(2M2 -n? —2Mn)3+(2M2 —n2)3 —(2M2 -n’ +2Mn)

i

C =

Some numerical examples are illustrated below

meono b ¢ (a+b) (b+c) (c+a)
2 1 4060 6588 —3844 (22)3 (4)3 (6)3

2 2 6400 7424 -6912 (2 4)3 (8)3 (_ 8)3
1 3 -7420 7412 —10156 (_ 2)3 (_14)3 (_ 26)3
3 2 59360 81248 —-59296 (52)3 (28)3 (4)3

7 4 8377120 12647456 —8236512 (276)3 (1 64)3 (52)3
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Case iii

Rewrite (11) as

pP+2¢° =671 (16)
Assume that o= §(r,s) = r? 4252
amn

where 7,8 are non-zero distinct integers

Replace 1 by

(1+i2v2)1-i242)
9

1=

(18)

Using (17) and (18) in (16), we get

) (1+12J_X1—12\/_( v202)

pP+2q

Expanding the right hand side of the above equation and equating the positive parts on both sides, we obtain
(p-i—zq\/_) (r+zs\/_) (1+i2\/§) (19)

Equating the rational and irrational parts, we get

p =%[r2 ~2s? —8rs]

q= %[21’2 — 45 + 2rs]

Here, the values of p and ¢ are integers when » = 3R and s = 3§

Thus,

~|3R? — 652 —24Rs ], ¢ =[6R? 125 + 6RS |, 5 = 9R? +1852 where R %S (20)

using (20) in (10), we get

a=9R> 1852 18RS, B =-3R> +65% —30RS ,A =3R%> —6S? —24RS Q1)

Substituting (21) in (5), (6) and (7), we obtain

a :%[(9R2 — 1852~ 18RS | +(— 3R +65% —30RS | —(3R2 - 687 —24RS)3}

b =%[(9R2 ~185* 18RS )3 +(3R2 - 652 —24RS)] ~(-3R2 +65? —30RS)3}



6538 Asian Journal of Science and Technology Vol. 08, Issue, 11, pp.6534-6540, November, 2017

¢= %[(— 3R +652 ~30RS) +(3R? —65% —24RS ) —(0R? ~1852 ~ 18RS )3}

We find that the triple (a ,b,c) is integer when S is arbitrary and R is even.

Choose R =2T

Hence, the values of a ,b, ¢ satisfying our assumption are given by

a=4 (1872 —95% —1857 [ + (672 +352 —308T) (672 —352 —24ST)3}

b=4 (18T2 952 ~18ST) + (672 - 352 - 2457 —(— 6T* +38° —305T)3 }

o
Il
N

(— 6T* +38° —305T)3 +(6T2 -38° —24ST)3 —(18T2 952 1857 }

Some numerical examples are presented below

T S a b c (a+b) (b+c) (c+a)

1 2 — 629856 — 629856 — 629856 (108  (~108) (-108)°

2 3 15881292 3068388 — 28480572 —(234)  (-294) (-354)°

2 1 ~1968300 2125764 — 2283228 (54)° (-54) (-162)°

5 4 —1168382880 1167123168  —1599204384  (-108)°  (-756)°  (~1404)°

72 —544825440 2221502112  -2222761824 (1188  (-108)°  (-1404)
Case iv

Replace by 1 by

(1+i 1242 Ji-11242)

289

1= (22)

Repeating the same procedure as explained in case(iii), the general solutions to (11) are expressed by

p= %[rz —2s? —48rs]

q= %[121”2 —24s% + 2rs]

Since our interest is on finding integer solutions, we find that p,qand O are integers, for the choices of ¥ and s
r=17R and s =178
Thus,

p=[17R? 3452 ~816RS |.q = [204R? — 40852 +34RS | 5 = 289R? + 57852 (23)
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using (23) in (10), we evaluate that

o =221R%* —4428% —782RS , f =—187R* +3745% —850RS ,y =17R* —345% —816RS (24)
On substituting (24) in (5), (6) and (7), we obtain
[ 3

a =% (221R2 —4428% —T82RS )3 - (—187R2 +374S° —850RS) - (17R2 ~348? —816RS)3}

b =% (21R% — 44252 —782RS | + (178 — 3452 ~816RS| — [-187R% + 37457 —850RS)3}

c =% (—187R2 +37452 ~850RS | +(17R2 ~345% ~816RS | - (221R2 —4428% —782RS )j}

Hence, the triple (a ,b,c¢) is integer when S is arbitrary and R = 2T

Hence,

a=4 (442T2 — 22152 - 7828T ) + (- 37472 +1875% —85087 | (34T2 ~178% - 8165T)3}

b= 4| (44272 — 22152 —7825T)3 + (34T2 1752 —8165T) - (— 374T7% +18757 —8505T)3 }

¢ =4/ (-37472 +18752 —8505T) + (3472 ~1752 —8165T ) — (44272 — 22152 — 7825T | }

Some numerical examples are tabulated below

T S a b C (Cl+b) (b+C) (C+a)
| 2 -—2.311845558x10"  —4.145927414x10'° 4466663776 (4012 (3332 (-2652)
11 — 3 126534940 1714067092 — 5794726284 (1122 (-1598)°  (-2074)°
0 1 ~16998980 — 69351908 69312604 (~442) (=34 (74)
3 2 -1451033404x10" | 418388131102 —2:226903797x10"* (L3106) (—0316) (15436
2 0 8703477760 3.55081769x 10" 3.548805325x10'" (3536  (72)  (-2992)

Conclusion

In this communication, we search for the triple (a ,b,c) such that the sum of any two of them is a cubical integer. To conclude,

one can search for various triples, quadruples, quintuples etc. such that the sum and difference of any two of them is a bi-quadratic
integer.
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