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The study  focused on the theoretical  investigation  of superconducting  gap parameters, density  of states, 
electronic specific heat and  condensation energy of two-band iron based superconductor MgB2. By 
developing  a canonical two band BCS Hamil tonian containing a Fermi Surface of P(π)- and d(σ)-bands 
for the given system and by using the double time temperature dependent Green’s function formali sm, 
we obtained mathematical expressions  for superconducting  order parameters for the electron intra-band 
�Δp�, hole in tra-band (Δd), inter-band  between  the two bands �Δpd� and  superconducting  transition 

temperature (TC). Furthermore, we obtained the density of states  for each int ra-band, N(ε), electronic 
specific heat (Ces)and  condensation energy  (Ec) for MgB2. By us ing  the experimental values and  by 
considering  some plausible approximations of the parameters in the obtained  expressions , phase 
diagrams of superconducting  order parameters for Δp, Δd,Δpd versus  temperature and  superconducting 

transition  temperature (TC)versus  the inter-band pairing potential  �Vpd� are plotted . We also  plotted the 
density  of states for the elect ron  intra-band , Np(ε)and  hole intra-band , Np(ε) versus  excitation energy 

(ε) at T=0K, and the variation of density  of states  with temperature, electronic specific heat for the 
electron  intra-band  (Cp)and  hole in tra-band(Cp)versus temperature are plotted. Similarly, phase 

diagrams of condensation energy  (Ec) versus temperature, inter-band  pairing  potential and 
superconducting transition  temperature are plotted for the material. Our results  are in agreement  with 
previous  findings . 
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INTRODUCTION 
 

The surprising discoveredof superconductivity in magnesium diboride (MgB2) with transition temperature (TC) of 39 K is the 
intermediate classes between low temperature and high  temperature superconductors(1).Soon after the discovery scient ists 
andtechnologists understood the advantages of this new intermetallic superconductor and thematerial got wide attention among the 
scientifi c community.MgB2 attracted experimentalists as well as theoreticians because of itspotential applications and peculiar 
properties which were quite unexpect ed in such anintermetallic.This discovery certainly revived the interest in the fi eld of 
superconductivity especially in non-oxides, and initiated a search for superconductivity in related boron compounds (2). 
Measurements o f in  plane and out o f plane Hall coefficients sho w dominant hole  type carriers along the a-b pl ane and electron 
type carri ers along the c direction,  representing the multiband nature of MgB2 (3-5).Most of the studies pointed out that MgB2 can 
be considered as aphonon-mediated BCS type superconductor, with selective coupling between specificelectronic states and 
speci fic phonons are the reasons for superconductivity (6, 7, 8-11). MgB2 is the first superconductor to show clearly two distinct 
superconducting gaps in its superconducting state. The first one is a heavy hole band, built up of boron σorbitals. The second one 
is the broader band with a smaller effective mass, built up mainly of π boron orbitals(12-16).There is a large difference in  the 
electron-phonon coupling on different Fermi surface sheets and this leads to multiband description of superconductivity. MgB2 is a 
weak coup- ling two band phononic system where the Coulomb pseudo-potential and the inter-channel paring mechanism are key 
terms to interpret the superconducting state (17).Coulomb potential in the d-orbitals of the transition metal reduce the isotope ex- 
ponent, whereas sp-metals generally shows a nearly full isotope effect (18). It is quite natural to describe a two-gap 
superconductor by means of a two-band model with inter-band coupling (19,20). 
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For MgB2, an approach of such kind is also directly proposed by the nature of the electron spectrum mentioned. There is a number 
of two band type approaches for superconductivity in MgB2 (21). We may note that two band models have been exploited in 
various realizations for high-Tc cuprate superconductivity (21,22). In the present study, we use σ-π inter-band coupling with a 
strong σ-inter-band contribution o f electron-phonon and Coulomb nature. The inter-band interaction is considered to be repulsive 
(an advantage of two band models) corresponding to electron-electron interaction(23). Therefore I study the two-band 
superconductor MgB2 has two energy gaps, Δ� and Δ� in the electron and hole bands respectively which vanish at the same 
superconducting transition temperature (T�). The two superconducting gaps have an own intra-band “ i” with coupling potential 

V�(�) in each band and the inter-band with coupling interaction potential �V��� between the two bands. The presence of inter-band 

pairing interaction enhances pairing of electrons and leads the superconducting gaps o f the electron and hole bands to vanish at the 
same superconducting transition temperature (T�) though they are different at zero temperature (24). 
 

Theoretical Model System Hamiltonian in Two Bands  
 
The model system Hamiltonian in the two band iron based superconductor MgB2 is given by (24-28), 
 

      (1) 
 
H� = H��

� + H��
� + H���      (1) 

 
Where 
 
H��
� = ∑ ∈� �C��↑

� C��↑ + C���↓
� C���↓� −� ∑ V��� �< C��↑

� C���↓
� > C���↓C��↑+ < C��↑C���↓ > C��↑

� C���↓
� �  (2) 

 

H��
� = ∑ ∈� �C��↑

� C��↑ + C���↓
� C���↓� −� ∑ V��� �< C��↑

� C���↓
� > C���↓C��↑+ < C��↑C���↓ > C��↑

� C���↓
� �                                  (3) 

 

H��� = ∑ V���< C��↑
� C���↓

� > C���↓C��↑ +�+< C��↑C���↓ > C���↓
� C��↑

� ) + ∑ V��(< C��↑
� C���↓

� > C���↓C��↑+ < C��↑C���↓ > C��↑
� C���↓

� )����  

 (4) 
 
Now, substituting equations (2-4) into equation (1) we get, 
 

H� = � ∈� �C��↑
� C��↑ + C���↓

� C���↓�+  � ∈� �C��↑
� C��↑ + C���↓

� C���↓�

�

− � V���< C��↑
� C���↓

� > C���↓C��↑+< C��↑C���↓ > C��↑
� C���↓

� �

��

− � V�� <

�

C��↑
� C���↓

� > C���↓C��↑+ < C��↑C���↓ > C��↑
� C���↓

� ) + − � V��(< C��↑
� C���↓

� > C���↓C��↑ +

��

< C���↓C��↑
�

> C��↑
� C���↓

� ) +  

                          - ∑ V��(�� < C��↑
� C���↓

� > C���↓C��↑+< C���↓C��↑ > C��↑
� C���↓

� )                                                                                             (5) 

Now, for  
           ∆��

� = ��� < ���↑
� ����↓

� >  

   ∆��
� = ��� < ���↑

� ����↓
� >  

 ∆�
�= ��� < ��↑

� ���↓
� >  

          ∆�
�= ��� < ��↑

� ���↓
� >  

     ∆��= ��� < ���↑����↓ >  

           ∆� = ��� < ���↑����↓ >  

   ∆� = ��� < ���↑����↓ >  

 
we obtain, 
 
H    = ∑ ∈� �C�↑

� C�↑ + C��↓
� C��↓� +� ∆��

� ∑ C��↓C�↑ + ∆�� ∑ C�↑
� C��↓

�
�� + ∑ ∈� �C�↑

� C�↑ + C��↓
� C��↓� +� ∆��

� ∑ C��↓C�↑ +�

∆�� ∑ C�↑
� C��↓

�
� + ∆�

� ∑ C��↓C�↑ + ∆�� ∑ C�� ↓
� C�↑

�
� + ∆�

� ∑ C��↓C�↑� + ∆� ∑ C�↑
� C��↓

�
�     (6) 

 
where the fi rst and  second  t erms are  the energy o f conduction electrons and the terms involving superconductivity due to  the 
intra-paring at the electron Fermi surface respectively.  The third and fourth terms are the energy o f conduction electrons and the 
terms involving superconductivity due to the intra-paring at the hole Fermi surface respectively. The last two terms are the terms 

involving superconductivity due to the inter-band between the two bands. c��↑
� �c���↓�and c��↑

�
(c���↓)  are the creation (annihilation) 

operators in the electron and hole bands respectively.  
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Temperature dependence of  superconducting order parameters on the electron and hole intra-bands and inter-bands: In 
order to find the equation o f motion for the superconducting correlation function ≪ c��↑

� ,c���↓
� ≫  in the electron b and, we used the 

double-time temperature dependent Green’s function formalism (29) which is expressed as, 
 

� ≪ c��↑
�
,c���↓

�
≫=≪ �c��↑

�
,H� �,c���↓

�
≫  

 

� ≪ c��↑
�
,c���↓

�
≫=≪ �C��↑

� ,H���+ �C��↑
� ,H��� + �C��↑

� ,H����,c���↓
�

≫   (7) 

 

Now, evaluating the commutating relation, �C��↑
� ,H���, we obtain, 

 

�C��↑
� ,H��� = (C��↑

� ,� ∈� �C��↑
� C��↑ + C���↓

� C���↓�) − (C��↑
� ,∆��

� �

�

C���↓C��↑) + (C��↑
� ,

�

∆�� � C��↑
� C���↓

� )  
�

 

                   = � ∈� (
�

�C��↑
� ,���↑

� ���↑� + �C��↑
� ,����↓

� ����↓�) − ∆��
� � (C��↑

� ,
�

����↓���↑) + ∆�� � (C��↑
� ,

�

���↑
� ����↓

� )  

 
Applying the commutations and anti-commutations rules, we have, 
 

�C��↑
� ,���� = � ∈� (

�

�C��↑
� ,���↑

� ���↑� + �C��↑
� ,����↓

� ����↓�) − ∆��
� � (C��↑

� ,
�

����↓���↑) + ∆�� � (C��↑
� ,

�

���↑
� ����↓

� )  

 
From which we obtain, 
 
�C��↑

� ,H��� = −∈� C��↑
� + ∆��

� C���↓        (8) 

 
Furthermore, the commutating relation for �C��↑

� ,H��� gives, 

�C��↑
� ,H��� = (C��↑

� ,� ∈� �C��↑
� C��↑ + C���↓

� C���↓� − (C��↑
� ,

�

∆��
� � C���↓C��↑) +  (

�

C��↑
� , ∆�� � C��↑

� C���↓
� ) 

�

 

�C��↑
� ,H��� = � ∈� ((C��↑

� ,
�

C��↑
� C��↑) + �C��↑

� ,C���↓
� C���↓�) − ∆��

� � (

��

C��↑
� ,C���↓C��↑) +  ∆�� � (C��↑

� ,
��

C��↑
� C���↓

� ) 

From which we get, 
 
�C��↑

� ,H��� =     (9) 

 
Similarly, for�C��↑

� ,H���� we obtain, 

 

�C��↑
� ,H���� = �C��↑

� ,− ∆�
� � C���↓C��↑ − ∆�

��

� C��� ↓
� C��↑

�

��

− ∆�
� � C���↓C��↑

��

− ∆� � C��↑
� C���↓

�

��

� 

 

(C��↑
� ,H���) = − ∆�

� ∑ �C��↑
� ,C���↓C��↑� −  ∆� ∑ (C��↑

� ,�� C��� ↓
� C��↑

� ) − ∆�
� ∑ (C��↑

� ,���� C���↓C��↑) −  ∆� ∑ (�� C��↑
� ,C��↑

� C���↓
� ) 

From which we get, 
 
�C��↑

� ,H���� = ∆�
�C���↓  (10) 

 
Substituting equations (8-10) into equation (7), the equation of motion for ≪ C�↑

� ,C��↓
� ≫ is expressed as, 

 

≪ C��↑
� ,C���↓

� ≫ = 
∆��
� �∆�

�

(��∈�)
≪ C���↓,C���↓

� ≫    (11) 

 

In the same way, the equation of motion for ≪ C���↓,C���↓
� ≫ becomes, 

 
ω ≪ C���↓,C���↓

� ≫ = 1+ ≪ �C���↓,H� �,C���↓
� ≫  

 
ω ≪ a���↓,a���↓

� ≫= 1+≪ �C���↓,H� � = �C���↓,H�
�� + �C���↓,H�

�� + �C���↓,H����,a���↓
� ≫   (12) 

 
Now, evaluating the following commuting relation, that is,  
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�C���↓,H�
�� = � ∈�

�

�C���↓,�C��↑
� C��↑ + C���↓

� C���↓��− ∆��
� � (C���↓,

�

C���↓C��↑) − ∆�� � (
�

C���↓,C��↑
� C���↓

� )  

�C���↓,H�
�� = � ∈�

�

��C���↓,C��↑
� C��↑� + �C���↓,C���↓

� C���↓�� − ∆��
� � (C���↓,

�

C���↓C��↑) − ∆�� � (
�

C���↓,C��↑
� C���↓

� ) 

 
Thus we get,  
 
�C���↓,H�

�� = ∈� C���↓ + ∆��C��↑
�     (13) 

 
Applying the same procedures as for the electron above, the commutating relation for �C���↓,H�

�� gives, 

 

�C���↓,H�
�� = � ∈� (

�

C���↓,(C��↑
� C��↑ + C���↓

� C���↓)) − ∆��
� � (

�

C���↓,C���↓C��↑) −  ∆�� � �C���↓,C��↑
� C���↓

� �

�

 

�C���↓,H�
�� = � ∈� ((C���↓,

�

C��↑
� C��↑) + (C���↓,C���↓

� C���↓) ) − ∆��
� � (

�

C���↓,C���↓C��↑) −  ∆��� �C���↓,C��↑
� C���↓

� �

�

 

 
Hence we get,  
 
�C���↓,H�

�� = 0      (14) 

 
Similarly,  

�����↓,����� = �����↓,− ∆�
� � C���↓C��↑− ∆�

��

� C��� ↓
� C��↑

�

��

+ ∆�
� � C���↓C��↑

��

− ∆� � C��↑
� C���↓

�

��

� 

�����↓,����� = −∆�
� � (����↓,

��

C���↓C��↑) − ∆� � (����↓,

��

C��� ↓
� C��↑

� ) − ∆�
� � (

��

����↓,C���↓C��↑) − ∆� � �����↓,C��↑
� C���↓

� �

��

 

 
From which we get, 
 
�C���↓,H���� = ∆� C��↑

�         (15) 

 
 
Substituting equations (13-15) into equation (12), the equation of motion for ≪ ����↓,C���↓

� ≫ becomes,  

 

≪ ����↓,C���↓
� ≫ = 

�

��∈�
+

∆���∆�

��∈�
≪ C��↑

� ,C���↓
� ≫      (16) 

 
Now, substituting equation (16) into equation (11) we get, 
 

≪ C��↑
� ,C���↓

� ≫ =  
∆���∆�

���∈����∆���∆� �

�         (17) 

 
It is a well-known fact that, the superconducting order parameter in the electron band can be related to the Green’s function as, 
 

 ∆��
�  = 

���

��
∑ ≪ C��↑

� ,C��� ↓
� ≫ �   (18) 

 

whereβ =
�

���
,  k�  and V�� are the Boltzmann constant andthe paring potential in electron intra-band respectively.  

 
Now, we use the expressionω ⟶ �ω� and Matsubara’s frequency(30),given by  
 

ω � =
(����)�

�
 .                          (19) 

 
Substituting equations (17) and (19) intoequation (18) we get, 
 

  ∆��
� = 

����

�
∑ �

∆��
� �∆�

�

�(����)�) �
�
���(∈�

���∆��
� �∆

�
��

�
)
��,�        (20) 
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By changing the summation into integration and by introducing the density of state at the Fermi level, N�(0) , and using the 

relation, 
 
����(βϵ/�)

�βϵ
= ∑

�

((����)π)��(βϵ)��,�    (21) 

we get, 

∆��
� = V��N�(0) ∆��

� ∫
ћ��

�

�����
���

�
�

��
d ∈�+ V��N�(0) ∆��

� ∫
ћ��

�

�����
���
�

�

��
dE�(22) 

 

where� = �ϵ�� + �Δ�� + Δ���
�
  and �′= �ϵ��� + �Δ� + Δ���

�
 

 
Now, if we consider the electron intra-band only, equation (22) becomes, 
 

�

�����(�)
= ∫

ћ��

�

�����
���

�
�

��
dE�        (23) 

 
Now, using Laplace’s Transform, the integral in equation (23) yields, 
 

�

�����(�)
= ∫

ћ��

�

�����
� 

�
�∈�

��∆��
� �

�∈�
��∆��

�
d ∈� − 4β� ∆��

� �
∫
ћ��

�
∑ �

��(����)�
�
����

���

� (����)
�
�
�

�
�
� dE�    (24) 

 
Using the substitution method and rearranging, equation (24) reduces to, 
 

�

�����(�)
= ln�1.14

ℏ��

���
�
��Δ��

� β�

π�
∑ �

(����)�
∞
� ∫

�

(����)�

∞

�
d    

 (25) 
 

wherey =
βϵ�

π(����)
 

 
Applying Zeta and Riemann zeta functions, equation (25) becomes, 
 

�

�����(�)
= ln�1.14

ℏ��

���
� −

Δ��
�

�
�
� �

�
� ( 0.1065)     (26) 

 
At T = T�  , we have, 

 
�

�����(�)
= ln�1.14

ℏ��

����
�      (27) 

 

Substituting equation (27) into equation (26) and using the relation ln(1 − x) = −x−
��

�
+ ⋯ , we get, 

 
 

Δ��(T) = 3.06k�T� �1−
�

��
�

�

�
                                                                                                                  (28) 

 
At low temperature, the transition temperature is expressed as, 
 

  T� =  1.14
ћ��

��
exp�−

�

����(�)�
�                                                                                                              (29) 

 
Thus, using equation (29) in equation (28), the expression for the superconducting order parameter, Δ�(T)  for electron intra-band 

becomes, 
 

  ∆��(T) = 3.5ћω �exp�−
�

����(�)�
� �1−

�

��
�
�/�

       (30) 

 
whereN��(0) = 3.09(meV)�1 andV�� = 3.09(eV) are the density of state at the Fermi level  and the pairing potential for the 
electron intra-band respectively  andℏω � = 8.75meV is the Debye energy.  
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Similarly, applying the same procedure as for the electron above, the equation of motion for the superconducting correlat ion 
functions ≪ c��↑

� ,c���↓
� ≫  for the hole intra-band becomes,  

 

≪ C��↑
� ,C���↓

� ≫=
∆��
� � ∆�

�

��∈�
≪ c���↓,c���↓

� ≫        (31) 

and 

≪ c���↓,c���↓
� ≫ =

�

��∈�
+

 ∆���∆�

��∈�
≪ C��↑

� ,C���↓
� ≫            (32) 

 
Finally, after a couple of steps the expression for the superconducting order parameter,  Δ�(T)  for hole intra-band becomes, 
 

    ∆��(T) = 3.5ℏω �exp�−
�

����(�)
��1 −

�

��
�
�/�

           (33) 

 
whereN�(0) = 3.15(meV)��and �� = 3.093�10����(����)��arethe density of state at the Fermi level  and pairing potential for 

the hole intra-band respectively. The superconducting order p arameter for the inter-band between electron and hol e bands can be 
related to the Green’s function as, 
 

 ∆�= 
���

��
∑ (≪ C��↑

� ,C���↓
� ≫ +�� ≪ C��↑

� ,C���↓
� ≫     (34) 

 
After a couple o f steps, the expression for the superconducting order parameter, Δ��(T) due to inter-band interaction between the 

bands is given by, 
 

 ∆�(T) = 3.5ℏω�exp�
�

������(�)��(�)

��1 −
�

��
�

�

�
          (35) 

 
whereV�� = 1.80eVand is the inter-band paring potential between the electron and the hole bands. 

 
Dependence of superconducting transition temperature on the inter-band pairing potential: The dependence of transit ion 

temperature on the inter-band pairing potential can be studied by coupling the two superconducting equations given by (31),  
 

Δ� = V�N�(0)Δ� ∫
�����

��

�
�

�

ℏ��

�
dϵ+ V��N�(0)Δ� ∫

�����
���

�
�

��

ℏ��

�
dϵ�                                                       (36) 

and 

Δ� = V�N�(0)Δ� ∫
�����

β��

�
�

���

ℏω�

�
dϵ′+ V��N�(0)Δ�∫

�����
β�

�
�

��

ℏω�

�
dϵ           (37) 

 
Let  
 

F(A) = ∫
�����

��

�
�

��

ℏ��

�
dϵandF(B) = ∫

�����
���

�
�

���

ℏ��

�
dϵ′      (38)      

 
Substituting equation (38) into equations (36) and (37) we get respectively, 
 
Δ� = V�N�(0)Δ�F(A) + V��N�(0)Δ�F(B)                                                                                                                                    (39) 

 
and 
Δ� = V�N�(0)Δ�F(B) + V��N�(0)Δ�F(A)  (40) 

 
Now, rearranging equations (39) and  (40)  we get respectively, 
 
Δ��1 − V�N�(0)F(A)� = V��N�(0)Δ�F(B)                (41) 

and 
Δ�[1− V�N�(0)F(B)]= V��N�(0)Δ�F(A)            (42) 

 
Now, considering the products of equations (41) and (42) and rearranging we get,  
 
�1− V�N�(0)F(A)�[1− V�N�(0)F(B)]= V��

� N�(0)F(B)N�(0)F(A)   (43) 

 
At T = T�  , Δ� = Δ� = 0. Thus, we have F(A) = F(B) = F(T�). 
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Therefore, equation (43) becomes, 
 

�V��
� − V�V��F

�(T�) + �
��

��(�)
+

��

��(�)
�F(T�) −

�

��(�)��(�)
= 0     (44) 

 
The solution for equation (44) can be calculated as, 

F(T�) =

�
�

�
�

��

��(�)
�

��
��(�)

���
�

�
�

��

��(�)
�

��
��(�)

�
�
�
���
� �����

��(�)��(�)

���
� �����

           (45) 

 

But at  T = T�, F(T�) = ln�1.14
ℏ��

����
�. 

 
Finally, the expression for T� becomes, 

 

T� = 1.14
ℏ��

��
exp�

�����(�)�����(�)�
������(�)�����(�)�

�
������

� ��������(�)��(�)

�����
� ��������(�)��(�)

�  (46) 

 
If the intra-band interactions are missing, i.e. V� = V� = 0 , the transition is solely induced by the inter-band interaction and is 

given by, 

           T� = 1.14
ℏ��

��
exp�−

�

������(�)��(�)

�  (47) 

 
Equation (47) relates T� to V�� in the two band model mediated by the inter-band pairing interaction (32). 

 
Thus, one can easily see that, by takingV� = V� = 0, the inter-band interaction can induce the superconducting transition 
temperature, T�.  

 
Density of  states in the electron and hole intra-bands  
 
The density of states as a function of excitation energy(�) in the electron band is defined as (33), 
 

N�(ε) = lim��⟶ �
�

�π
∑ �G↑↑�k,ε + iϵ�(k)� − G↓↓�k,ε − iϵ�(k)���         (48) 

 
whereG↑↑ is spin quasiparticles Green function for electron band. Substituting  equation (11) into equation (16), we have, 

 

≪ ����↓,C���↓
� ≫ =

��∈�

∈�� ��
�     (49) 

 
where��

� = ∈�
�+ ∆��

�  

 
Using the partial fraction method, equation (49) becomes, 
 

≪ ����↓,C���↓
� ≫ =

�

�
� �

∈���
��1 +

∈ �

��
� +

�

�
� �

∈���
� �1 −

∈ �

��
�               (50) 

 
Using the definition of the Dirac-delta function, the expression for the density o f states in the elect ron intra-band of equation (48)  
becomes, 
 

 �� (∈) =
�

�
∑ ��1 +

∈ �

��
��� ∈ − �� � + �1 −

∈ �

��
� �� ∈ +  �����    (51) 

 
Now, changing the summation into integration, we get, 
 

N�(∈) =  N�(0)∫ �1+
∈ �

��
�

ћ��

�
δ� ∈ − E�)�d ∈�+  N�(0)∫ �1 −

∈ �

��
�

ћ��

�
δ� ∈ + E�)�d ∈�      (52) 

 
Using the Dirac-delta integration relation,  ∫ f(x)δ(x− a)dx

∞

��
= f(a), we have, 

 

N�(ε) = N�(0)�
���

��
�                (53) 
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Finally, for ϵ� = εand E�
� = ε� − Δ�

�
 , we get, 

 

N�(ε) = �
2N�(0)

�

����Δ�
�
,for ε > Δ�

0                 for ε < Δ�

�     (54) 

 
Similarly, applying the same procedure as for the electron above, the density of state in the hole intra-band becomes,  
 

N�(ε) = �
2N�(0)

�

����Δ�
�
,forε > Δ�

0                 forε < Δ�

�             (55) 

 

CC 

���
� = 

���(�)

��(�)
∫ � ∈� �

�∈������(���)

�{���(���)��}�
+

�(���∈�)∈�

���∈
�
��∆

��
� �∆

�
��∆��∆�

��∆�∆��
�

� �
����� (���)

{���(���)��}�
−

����� (���)

{���(���)��}�
�

�
ℏ��

�
(63) 

�� = + �∈�
�+ ∆��

� + ∆�� + ∆��
� ∆� + ∆��∆��  = +�∈�

�+ (∆�� + ∆�)� = + �∈�
�+ ∆�

�  

�� = −�∈�
�+ ∆��

� + ∆�� + ∆��
� ∆� + ∆��∆�� = -�∈�

�+ (∆�� + ∆�)� = − �∈�
�+ ∆�

�  

 
Electronics specific heat for π-band and σ-band are given by Equations (4.100) and (4.101) respectively. 
 

RESULTS AND DISCUSSION 
 

Employing the system model Hamiltonian in two bands for superconductorMgB� , we obtained the expressions for the dependence 
of superconducting order parameters for the intra and inter-bands on temperature, dependence of superconducting transition 
temperature (T�) on inter-band pairing potential�V���. Furthermore, we obtained the expressions for the dependence o f density o f 

states, N(ε) on excitation energy and the dependency of condensation energy (E�) on temperature, pairing potential and 
superconducting transition temperature. By using equations (30), (33) and (35) and by considering plausible approximations, the 
phase diagrams of Δ�(T), Δ�(T)  and Δ��(T) versus temperature are plotted for MgB� as shown in Fig. 1. Thus, we obtained the 
total superconducting order parameter in two band model as a linear sum of the intra and inter-bands for MgB� . Furthermore, 

using equation (47), the phase diagram for the variation of superconducting transition temperature with inter-band pairing 
potential is plotted as shown in Fig. 2 forMgB� . 

 

 
 

Fig . 1 Superconducting order parameters versus temperature for ���� 
 

 
 

Fig . 2 Superconducting transition temperature versus inter-band pairing  potential   
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Fig . 3 Densi ty of  states for the electron and hole intra-bands  at T=0K versus  excitation energy for ���� 
 

 
 

Fig . 4 Densi ty of  states for the electron and hole intra-bands  at different temperatures  versus excitation energy for ���� 
 

 
 

Fig . 5. Electronic specific heat for the electron and hole intra-bands versustemperatures  for ���� 
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Fig .6(a) . Condensation energy versus temperature, (b) Condensation energyversus inter-band pairing  potential  at  
T=0K and (c) Condensation energy versus superconducting transi tion temperature for  ���� 

 
Using equations (54) and (55),  the phase diagrams for the density of states in the electron intra-band, N�(ε)and hole intra-band, 
N�(ε) versus excitation energy (ε) are plotted as shown in Fig. 3. Similarly, the variation of the density of states in the electron 

intra-band, N�(ε) and hole intra-band, N�(ε) with temperature are also plotted as depicted in Fig. 4.  Using equations (62) and 

(63), the phase diagrams for the electronic speci fi c heat in the electron intra-band, C�(T)and hole intra-band, C�(T)  versus 

temperature are plotted as shown in Fig.5. Also, using equation (60), the phase diagrams for condensation energy versus 
temperature, condensation energy v ersus inter-band pairing potential at T=0K, and condensation energy v ersus superconducting 
transition temperature are plotted as shown in Figs. 6(a), 6(b) and 6(c) respectively for  MgB�. 

 
Conclusion 
 
In conclusion, we have presented a two-band model by developing a model Hamiltonian for superconductor MgB�  and using the 

double time temperature dependent Green’s function formalism for th e materi al which includes some o f the essential concepts of 
the material. As shown in Fig.1, the intra and inter-band superconducting order parameters, Δ�(T), Δ� (T)  and Δ��(T)are 

different at zero temperature and decrease as the temperature increases and vanish at the same superconducting transit ion 
temperature (T�) because of the presence of inter-band pair hopping in MgB� . We also obtained that, the superconducting 

transition temperature increases with increasing inter-band pairing potential �V���as shown in Fig. 2. As we can see from the 

figure, we conclude that, the two bands are not independent of each other and are coupled with each other via the inter-band 
pairing potential which induces pair-wise exchange between the two bands. The presence o f the inter-band on one hand enhances 
pairing of electrons and on the other h and leads to the single superconducting transition temperature.  Similarly, both the density 
of states for the electron and hole intra-bands vary in a similar way with the excitation energy and diverges when it approaches  ∆� 
and ∆� at T=0K respectively as depicted in Fig. 3. The density of states decrease with increasing temperature for each band as 

shown in Fig. 4.The electronic speci fi c heat increase with increasing t emperature for each band as shown in Fig. 5 Finally, the 
dependence of condensation energy on temperature, inter-band pairing potential and superconducting transition temperature are 
shown inFigs. 6(a), 6(b) and 6(c) respectively. As can be seen from Fig.6 (a) the magnitude of the condensation energy d ecreases 
with increasing temperature. Similarly, the magnitude of the condensation energy decreases with increasing inter-band pairing 
potential and superconducting transition temperatures as demonstrated in Figs. 6(b) and 6(c) respectively.  
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