ISSN: 0976-3376

RESEARCH ARTICLE

INTEGRAL SOLUTION OF THE TERNARY CUBIC EQUATION
 $6\left(x^{2}+y^{2}\right)-11 x y+x+y+1=552 z^{3}$

*Janaki, G. and Sangeetha, P.
PG and Research and Department of Mathematics, Cauvery College for Women (Autonomous), Bharathidasan University, Tiruchirappalli, Tamil Nadu, India

ARTICLE INFO

Article History:

Received $11^{\text {th }}$ March, 2023
Received in revised form
$19^{\text {th }}$ April, 2023
Accepted $27^{\text {th }}$ May, 2023
Published online $30^{\text {th }}$ May, 2023

Keywords:

Cubic Equation with Three Unknowns, Integral solutions.

Abstract

The ternary cubic condition $6\left(x^{2}+y^{2}\right)-11 x y+x+y+1=552 z^{3}$ is considered for deciding its non-zero particular basic arrangements utilizing the linear transformations $x=u+v, y=u-v(u \neq v \neq 0)$, and utilizing the strategy for factorization in complex forms, various methods of essential answers for the ternary cubic condition viable are gotten. In each method, fascinating relations among the arrangements, a few exceptional polygonal, pyramidal numbers and focal pyramidal numbers are displayed.

Citation: Janaki, G. and Sangeetha, P. 2023. "Integral solution of the ternary cubic equation $6\left(x^{2}+y^{2}\right)-11 x y+x+y+1=552 z^{3}$ ", Asian Journal of Science and Technology, 14, (05), 12509-12512.

Copyright©2023, Janaki, G. and Sangeetha, P. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

The subject of Diophantine condition, one of the fascinating areas of Number Theory, assumes a critical part in higher math and greatly affects gullible individuals and consistently possesses a surprising situation because of unchallenged verifiable significance. The Diophantine conditions might be either polynomial condition with no less than two questions for which number arrangement, are required or supernatural condition including geometrical, logarithmic, outstanding and surd capability to such an extent that one might be keen on getting whole number arrangement.

The issue of tracking down all number arrangements of a Diophantine condition with at least three factors and conditions of degree something like three, in everyday presents a reasonable plan of challenges. In [1-3], hypothesis of numbers was talked about. In [4,5], an exceptional Pythagorean triangle issue have been examined for its essential arrangements.

In [6-11], higher request conditions are considered for essential arrangements. In this correspondence, the non-homogeneous cubic condition with three unknowns addressed by the condition $6\left(x^{2}+y^{2}\right)-11 x y+x+y+1=552 z^{3}$ is thought of and specifically a couple of fascinating relations among the arrangements are introduced.

METHOD OF ANALYSIS

The ternary cubic equation to be solved is
$6\left(x^{2}+y^{2}\right)-11 x y+x+y+1=552 z^{3}$

Introducing the linear transformations
$x=u+v \quad ; \quad y=u-v$
in (1), it is written as
$(u+1)^{2}+23 v^{2}=552 z^{3}$
Now (3) is solved through different ways and using (2), different methods of integer solutions to (1) are obtained.
Method 1
Assume, $z=a^{2}+23 b^{2}$
Write 552 as,
$552=(23+i \sqrt{23})(23-i \sqrt{23})$
Using (4) and (5) in (3) and applying the method of factorization, define
$(u+1)+i \sqrt{23} v=(23+i \sqrt{23})(a+i \sqrt{23} b)^{3}$
Equating the real and imaginary parts, the values of u and v are obtained as
$u+1=23 a^{3}-1587 a b^{2}-69 a^{2} b+529 b^{3}$
$v=a^{3}+69 a^{2} b-69 a b^{2}-529 b^{3}$
Substituting the above values of \mathcal{U} and \mathcal{V} in (2), the values of X and y are given by
$x=24 a^{3}-1656 a b^{2}-1$
$y=22 a^{3}-1518 a b^{2}-138 a^{2} b+1058 b^{3}-1$
$z=a^{2}+23 b^{2}$
Properties:

1. $y(a, a)+288 S O_{a}+144$ Gno $_{a} \equiv 0(\bmod 145)$
2. $z(a, a)-12 C S_{a}-12 G n o_{a} \equiv 0$
3. $816 T_{3, a}-x(a, a)-816 P_{a}^{5}-816$ Gno $_{a} \equiv 0(\bmod 817)$
4. $x(a, a)+816 S O_{a}+408 G n o_{a} \equiv 0(\bmod 409)$
5. $y(a, a)-2 x(a, a)-1344$ SO $_{a}-672$ Gno $_{a} \equiv 0(\bmod 673)$
6. $2 y(a, a)-x(a, a)-240 S O_{a}-120$ Gno $_{a} \equiv 0(\operatorname{modl} 19)$
7. $x(a, a)-2 y(a, a)-z(a, a)+240 P_{a}^{5}+228 T_{6, a}+114 G n o_{a} \equiv 0(\bmod 115)$

Method 2

Equation (3) can be written as
$(u+1)^{2}+23 v^{2}=552 z^{3}$
Write $552=\frac{(19+i 4 \sqrt{23})(19-i 4 \sqrt{23})}{27^{2}}$
Define,
$(u+1)+i \sqrt{23} v=\frac{(19+i 4 \sqrt{23})(23+i 4 \sqrt{23})(a+i \sqrt{23} b)^{3}}{27}$
Equating real and imaginary parts, leads to
$u+1=\frac{1}{27}\left[345 a^{3}-23805 a b^{2}-7659 a^{2} b+58719 b^{3}\right]$
$v=\frac{1}{27}\left[111 a^{3}-7935 b^{3}+1035 a^{2} b-7659 a b^{2}\right]$
Since our aim is to find integer solution, assuming $a=27 A$ and $a=27 B$ in (8) and (9) and substituting the values of u, v in (2), the distinct nonzero integral solutions to (1) obtained as
$x=27^{2}\left[456 A^{3}-31464 A B^{2}-6624 A^{2} B+50784 B^{3}\right]-1$
$y=27^{2}\left[234 A^{3}-16146 A B^{2}-8694 A^{2} B+66654 B^{3}\right]-1$
$z=27^{2}\left[A^{2}+23 B^{2}\right]$
Properties:

1. $z(a, 1)-243 T_{8, a}-243$ Gno $_{a} \equiv 0(\bmod 17010)$
2. $z(1, a)-1863 T_{20, a}-7452$ Gno $_{a} \equiv 0(\bmod 8181)$
3. $2 z(a, 1)-243 T_{14, a}-T_{6, a}+C S_{a}-607$ Gno $_{a} \equiv 0(\bmod 34142)$
4. $\quad x(a, a)-4793904 S O_{a}-2396952$ Gno $_{a} \equiv 0(\bmod 2396951)$
5. $y(a, a)-15326496 P_{a}^{5}+15326496 T_{3, a}-15326496 G n o_{a} \equiv 0(\bmod 15326495)$
6. $\quad x(a, 1)-20776 T O_{a}-4 C C_{a}+2071638 T_{3, a}+9646308 G n o_{a} \equiv 0(\bmod 27499887)$

Method 3
Equation (3) can be written as
$(u+1)^{2}+23 v^{2}=552 z^{3} * 1$
Write ' 1 ' as,

$$
1=\frac{(22+i 2 \sqrt{23})(22-i 2 \sqrt{23})}{24^{2}}
$$

Define,

$$
(u+1)+i \sqrt{23} v=\frac{(23+i \sqrt{23})(22-i 2 \sqrt{23})(a+i \sqrt{23} b)^{3}}{24}
$$

Equating real and imaginary parts,
$u+1=\frac{1}{24}\left[460 a^{3}-31740 a b^{2}-4692 a^{2} b+35972 b^{3}\right]$
$v=\frac{1}{24}\left[68 a^{3}+1380 a^{2} b-4692 a b^{2}-10580 b^{3}\right]$
Since our aim is to find integer solutions, assuming $a=24 A, b=24 B$ in (10) and (11) and substituting the values of u, v in (2), the distinct non-zero integral solutions to (1) determined as

$$
\begin{aligned}
& x=24^{2}\left[528 A^{3}-36432 A B^{2}-3312 A^{2} B+25392 B^{3}\right]-1 \\
& y=24^{2}\left[392 A^{3}-27048 A B^{2}-6072 A^{2} B+46552 B^{3}\right]-1 \\
& z=24^{2}\left[A^{2}+23 B^{2}\right]
\end{aligned}
$$

Properties:

1. $x(a, a)+y(a, a)+z(a, a)-768 T_{11, a}-5376$ Gno $_{a} \equiv 0(\bmod 5374)$
2. $6912 T_{3, a}-z(a, a)-3456$ Gno $_{a} \equiv 0(\bmod 3456)$
3. $x(1,1)+y(1,1)+z(1,1)+2$ is a cubical integer.
4. $\frac{1}{24^{2}}[y(a, a)]+1$ is a cubical integer.
5. $\frac{1}{24^{2}}[y(a, a)-z(a, a)]-3456 R D_{a}-1726 T_{26, a}-2581$ Gno $_{a} \equiv 0(\bmod 6036)$
6. $\frac{1}{24^{2}}[x(a, 1)-z(a, 1)]-264 C C_{a}+T_{8, a}+1259 T_{3, a}+17352$ Gno $_{a} \equiv 0(\bmod 8280)$

Method 4
Equation (3) can be written as
$(u+1)^{2}+23 v^{2}=552 z^{3} * 1$
Write ' 1 ' as, $\quad 1=\frac{(13+i 7 \sqrt{23})(13-i 7 \sqrt{23})}{36^{2}}$

Define,

$$
(u+1)+i \sqrt{23} v=\frac{(23+i \sqrt{23})(13+i 7 \sqrt{23})(a-i \sqrt{23} b)^{3}}{36^{2}}
$$

Equating real and imaginary parts,

$$
\begin{align*}
& u+1=\frac{1}{36}\left[138 a^{3}-9522 a b^{2}-12006 a^{2} b+92046 b^{3}\right] \tag{12}\\
& v=\frac{1}{36}\left[174 a^{3}+414 a^{2} b-12006 a b^{2}-3174 b^{3}\right] \tag{13}
\end{align*}
$$

Since our aim is to find integer solution, assuming $a=36 A$ and $b=36 B$ in (12) and (13) and substituting the values of u, v in (2), the distinct nonzero integral solutions to (1) found as
$x=36^{2}\left[312 A^{3}-21528 A B^{2}-11592 A^{2} B+88872 B^{3}\right]-1$
$y=36^{2}\left[-36 A^{3}+2484 A B^{2}-12420 A^{2} B+95220 B^{3}\right]-1$
$z=36^{2}\left[A^{2}+23 B^{2}\right]$

Properties:

1. $x(a, 1)-202176 C C_{a}+7208352 T_{3, a}+7045056$ Gno $_{a} \equiv 0(\bmod 108335231)$
2. $z(4, b)-9936 T_{8, a}-9936$ Gno $_{a} \equiv 0(\bmod 30672)$
3. $18413568 O_{a}-y(a, a)-27620352 G n o_{a} \equiv 0(\bmod 27620353)$
4. $x(a, a)-z(a, a)-5184 R D_{a}-36319104 S O_{a}-18149184 G n o_{a} \equiv 0(\bmod 18154367)$
5. $\frac{1}{36^{2}}[x(a, a)-z(a, a)]-28032 C C_{a}-10509 T_{18, a} \equiv 10533(\bmod 28031)$
6. $\frac{1}{36^{2}} 9 z(a, a)$ is a cubical integer.
7. $\frac{1}{36^{2}} 6 z(a, a)$ is a perfect square.

CONCLUSION

In this paper, we have presented four different methods of non-zero distinct integer solutions of the non homogeneous cone given by $6\left(x^{2}+y^{2}\right)-11 x y+x+y+1=552 z^{3}$ is presented to conclude, one may search for other patterns of non-zero distinct integer solutions and their corresponding properties for other choices of cubic Diophantine equations.

REFERENCES

[1] Carmichael, R.D., The theory of numbers and Diophantine Analysis, Dover Publications, New York, 1959.
[2] Dickson L.E, History of Theory of Numbers, Vol.11, Chelsea Publishing Company, New York, 1952.
[3] Mordell. L.J, Diophantine equations, Academic Press, London, 1969 Telang, S.G., Number theory, Tata Mc Graw Hill publishing company, New Delhi, 1996.
[4] Gopalan.M.A., and Janaki.G., Integral solutions of $\left(x^{2}-y^{2}\right)\left(3 x^{2}+3 y^{2}-2 x y\right)=2\left(z^{2}-w^{2}\right) p^{3} \quad$ Impact journal of Science \& Technology, Vol-4, No.97-102, 2010.
[5] Janaki.G and Saranya.C., Observations on the Ternary Quadratic Diophantine Equation $6\left(x^{2}+y^{2}\right)-11 x y+3 x+3 y+9=72 z^{2}$ International Journal of Innovative Research in Science, Engineering and Technology, Vol-5, Issue-2, Pg.no: 2060-2065, Feb 2016.
[6] Janaki.G and Saranya.P., On the ternary Cubic Diophantine equation $5\left(x^{2}+y\right)-6 x y+4(x+y)+4=40 z^{3}$, International Journal of Science and Research- online, Vol 5, Issue3, Pg.No:227-229, March 2016.
[7] Gopalan.M.A., and Janaki.G., "Integral solutions of $\left.x^{2}-y^{2}+x y=\left(m^{2}-5 n^{2}\right) z^{3}\right)$ Antartica J.Math.,7(1)Pg.63-67(2010).
[8] G. Janaki, C. Saranya, "Integral solutions of the ternary cubic equation $3\left(x^{2}+y^{2}\right)-4 x y+2(x+y+1)=972 z^{3}$, IRJET, Vol.04, Issue 3, March 2017, 665-669.
[9] Janaki.G and Vidhya.S., On the integer solutions of the homogeneous bi-quadratic Diophantine equation $x^{4}-y^{4}=82\left(z^{2}-w^{2} p^{2}\right)$, International Journal of Engineering Science and Computing, Vol. 6, Issue 6, pp.7275-7278, June, 2016.
[10] Janaki.G and Saranya.C., Integral Solutions of the non-homogeneous heptic equation with Five unknowns $5\left(x^{3}-y^{3}\right)-7\left(x^{2}+y^{2}\right)+4\left(z^{3}-w^{3}+3 w z-x y+1\right)=972 p^{7}$, International Journal of Engineering Science and Computing, Vol. 6, Issue 5, pp.53475349, May, 2016.
[11] Janaki.G and Saranya.C., Integral Solutions of the homogeneous biquadratic Diophantine equation $3\left(x^{4}-y^{4}\right)-2 x y\left(x^{2}-y^{2}\right)=972(z+w) p^{3}$ International Journal for Research in Applied Science and Engineering Technology, Vol. 5, Issue 8, pp.1123-1127, Aug 2017.

