

Asian Journal of Science and Technology Vol. 14, Issue, 09, pp. 12706-12713, September, 2023

REVIEW ARTICLE

"NONLINEAR PENETRATIVE CONVECTION IN FLUID AND POROUS LAYERS WITH HEAT FLUX PRESCRIBED ON THE BOUNDARIES"-A BRIEF REVIEW

Nagarathna N*1, Sadiq Basha PM2, Jhenkara Manjunath3

¹Associate Professor, Department of Mathematics, Maharani's Science College for Women, Bengaluru, Karnataka, India ²Principal, St. Hopkins international College, Bengaluru, Karnataka, India

³Research Scholar, Department of Civil engineering, University Visvesvaraya College of engineering, Bangalore University, Bengaluru, Karnataka, India

ARTICLE INFO

Article History:

Received 06th June, 2023 Received in revised form 14th July, 2023 Accepted 17th August, 2023 Published online 30th September, 2023

Keywords:

Penetrative convection, Fluid, porous, Heat flux, Non-linear, Boundaries.

ABSTRACT

This review embodies the theoretical investigation of three types of problems viz., a general model for the Technique of Reconstitution, Penetrative convection in fluid and porous layers under different constraints like, rotation, salinity gradient, nonlinear temperature profile etc., and thermosolutal instability in homogenous and heterogeneous layers in the presence of coupled molecular diffusion. The aim of the present investigation is to provide the qualitative as well as the quantitative features of the phenomena e.g. about the form as the flow pattern, the size of the convective cell, the temperature, salinity and velocity distributions, the formation of horizontally long convection cells, occurrence of subcritical motions, the construction of the evolution equation, the amplitude etc., In Type I, in order to elucidate the properties of reconstituted equations by applying the technique to a highly complicated system of nonlinear equations, a general model consisting of coupled three nonlinear differential equations are considered. In Type II, five models are discussed where the boundaries have fixed-heat and salt flux conditions. In Type III, the boundaries are of free-slip type.

Citation: Nagarathna et al. 2023. ""Nonlinear penetrative convection in fluid and porous layers with heat flux prescribed on the boundaries"-a brief review", Asian Journal of Science and Technology, 14, (09), 12706-12713.

Copyright©2023, Nagarathna N, Sadiq Basha PM, Jhenkara Manjunath. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

In recent years, the study of the phenomenon of the convective process in a horizontal fluid/porous layer has received remarkable attention owing to its very wide applications in science, engineering and industrial areas. Convection can be the dominant mode of heat and mass transport in manyprocesses that involve the freezing and melting of the storage material. Natural convection is an omnipresent transport phenomenon in saturatedporous geological structures. In fact, the study of convection is of mostimportance in geophysical, astrophysical and heat transfer problems. For example, the extraction of energy from geothermal sources is the mostpromising one among the other methods and it is believed that the fluid in these reservoirs are highly permeable and consists of multi-components rather than a single component. Therefore, buoyancy driven convection in a porous medium with water as the working fluid is an important mechanism ofenergy transport. In fact, the key feature of a major geothermal system while on the land or beneath the sea floor is a high intrinsic heat transport. In fact, the local thermal conditions and the physical properties of media are directly ofgreat importance on the characteristics of the heat and mass transfer in suchreal configurations. Moreover, the nature of the fluid flow (2D, 3D, pattern and range) is drastically dependent on the complexity of geophysical sites, i.e., the geometry, heterogeneity and anisotropy of the domains. Fluid motions induced by free convection have tangible effects in geothermal areas, on the diffusion of pollutants or on the mineral diagenesis processes.

*Corresponding author: Nagarathna N

Associate Professor, Department of Mathematics, Maharani's Science College for Women, Bengaluru, Karnataka, India

Technically, the phenomenon is important as it may occur in porousinsulation of buildings thereby increasing the loss of heat. In the stellaratmosphere also, certain heavenly bodies may be considered to be porous material and the study has relevance to that also. Also, convection in planetarycores and stellar interiors often occurs in the presence of strong rotational andmagnetic constraints. Over the past four decades, there has been anincreasing concern about soil and water contamination from industrial andagricultural chemicals. In such cases, thermal and chemical interactions between a rotating porous layer and an overlying fluid layer can be considered. Such a study has many engineering and environmental applications also. The study of convection in a fluid saturated porous layer is also of interest since it provides a convenient means for experimentally determining the nonlinear effects such as, the preferred cell pattern. heat transport etc. In the case of Rayleigh-Be'nard Convection, it is necessary to consider a thin fluid layer to detect these phenomena whereas in porous media, the depth ofthe fluid can be greatly increased since the frictional force is much larger. Thestudy of porous convection has attracted the attention of considerableresearch workers because of its natural occurrence and its intrinsicimportance in many industrial problems, particularly in petroleum exploration, chemical and nuclear industries. The mechanism of transfer of heat from thedeep interior of the earth to a small depth in the geophysical region is of vitalimportance. These studies also help in power generation. More specifically, the results of the study of natural convection in a porous medium are useful innuclear industries in the evaluation of the capability of heat removal from ahypothetical accident in a nuclear reactor. As the fluid in the aquifers consists of multi-components rather thanjust a single component, there exists two sources of buoyancy. Further, multi-component onset of convection is important in many naturally occurring phenomena and technological processes.

Examples include: Convection instars, dynamics within the earth's core, oceanography, solar ponds, coating/drying processes and crystallization/solidification. The Coriolis force caused by earth's rotation plays a significant role in he determination of the qualitative and quantitative features of the system. The effect of geomagnetic field and earth's rotation on the stability ofgeophysical flows is of great interest to geophysicists. While studying the stability of earth's core, the role of magnetic field becomes important, wherethe earth's mantle consisting of molten conducting fluid, behaves like a porous medium and can become convectively unstable as a result of differential diffusion. The reason for the occurrence of this phenomenon is that the stabilizing effect of one component is reduced by diffusion in the presence of amagnetic field, thereby releasing the potential energy of the unstablecomponent. In geophysical problems, the effect of earth's rotation is considerable and distorts the boundaries of a hexagonal convective cell in afluid / porous layer and this distortion plays an important role in the process of extraction of energy.

Further, the understanding of the flow phenomenon in packed beds is of considerable practical importance especially in the interpretation of chemical reactor performance where hydrodynamic dispersion and molecular diffusion play important roles in mixing process. The coupled molecular diffusion phenomenon is also of interest in many problems such as

- i) the movement of fertilizers in the oil and leaching of salts from soil inagriculture,
- ii) radio-active and reclaimed sewage waste disposal into aquifers,
- iii) the transition zone between salt water and fresh water and
- iv) blood flow through a capillary etc..

Convective instabilities arise as a result of unstable equilibrium in aregion of the fluid / porous layer. Accordingly, when the region of unstable equilibrium is bounded by the fluid that is in stable equilibrium, in most of thecases the associated convective motion penetrates into the neighbouring regions of stable equilibrium. The cause for the penetration are(i) thevelocities and (ii) the nonvanishing of the tangential stresses of the perturbedmotion at the region of static stability. Penetrative convection arises in many geophysical and astrophysical situations. In the atmosphere a statically unstable layer is always surroundedby a stable region. For example, in the atmosphere, solar radiations can heatair near the surface of the earth or ocean and generate a gravitationallyunstable layer beneath a stable stratified environment. Another example ofinterestis a lowlevel inversion or stratosphere in the case of deep convection. The mechanism is interesting in the sense that, when convective motion occurs in the lower layer, it mixes with the overlying stable layer and thus convective motions penetrate into the stable fluid. The reciprocal situation of convection penetrating downwards from above can occur in lakes and oceansalthough in the ocean, upper mixed layer is typically formed by turbulencegenerated by surface wind. In other words, convective circulations in the well-mixed surface layer penetrate into the stable thermocline region. These examples of penetrative convection are principally unsteady and transient. Statistically, stationary penetrative convection may occur in stars, where large changes in the mean-free path of photons cause large changes inthe diffusion of heat with temperature. As a result, convective motions occur. Another important example of stationary penetrative convection is thatof convection in water of temperature near 4°C. In the case of water driven bybuoyancy force through a porous structure, the flow pattern is influenceddramatically by the occurrence of a density maximum at 3.98°C when thepressure is atmospheric.

In most of the laboratory experiments pertaining to the phenomenon of convection, the unstable layer is sandwiched between rigid boundaries but, the stellar convection zones are bounded by stably stratified regions. Hence, the steady penetrative convection across the interface between stable and unstable layers is of astrophysical importance. In fact, in the stably stratified photosphere solar

granulations is observed and may excite the oscillations detected in the upper atmosphere. Penetrative convection may also affect nuclear abundances. Forexample, the apparent shortage of lithium in the sun and other late-type starsmay be due to the slow mixing of material into the stable radiative zone andpenetration can no longer be ignored in the physics of stellar interiors. A thorough understanding of geophysical, astrophysical andmeteorological convection process requires a good knowledge of thequalitative and quantitative features of penetrative convection in a fluid /porous layer under the influence of external constraints like, rotation, salinitygradient, nonlinear temperature profile etc. Therefore, an attempt is made in his review to know the onset of penetrative convection in fluid and porouslayers in the presence and absence of external constraints, to predict theformation of horizontally long convection cells, occurrence of subcriticalmotions, the behaviour of the vertical and horizontal structure of the velocityfields, the construction of evolution equation

Convective phenomenon-a brief review: The concept of convection is associated with the process of heat transfer through the motion of liquids or gas. It is that process of heat transportin which there is a movement of the macro-particles of the liquid or gas. Convective instability arises, whenever there is an imbalance between the viscous and the buoyancy forces. The first transition will be conduction to convection and thereafter the motion becomes super-critical and finally leads to turbulence if the associated parameter (Rayleigh number) is sufficiently high. There are basically four types of convection. The following diagram gives a clear picture of the different sub-sections associated with the convection phenomenon.

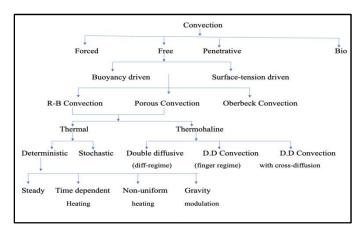


Figure 1. Various types of Convective phenomena

The study pertaining to this review is mainly concerned with penetrativeconvection in the free convection environment, induced by buoyancy forces. Buoyancy driven convection is due to the density differences which result due to the temperature/ concentration variations. Broadly speaking thermal convection is of two types:

- i) Overbeck convection
- ii) Rayleigh-B'enard convection

In the first type, the configuration is such that the fluid layer is subjected to a temperature gradient normal to the direction of gravity, whereas in the second type the fluid will be subject to a temperature gradient parallel to the gravity but opposing it. Convection sets in when the destabilizing effect of the temperature difference across the layer overcomes the opposing forces(viz, viscosity and action of conductivity) and is characterized by a dimensionless parameter called "Rayleigh number".

The density difference in the case of buoyancy driven convection mayarise due to the vertical gradient of salinity present in the fluid/porous layer. Afluid layer containing vertical gradients of both temperature and salinity issubject to several instabilities arising in industrial and geophysical problems.

The minimum requirements for the occurrence of double-diffusive convection are the following:

- i) The fluid must contain two or more components having differentmolecular diffusivities. It is the differential diffusion that produces the density differences required to drive the motion.
- ii) The components must make opposing contributions to the vertical density gradient (It is assumed throughout that the fluids are completely miscible, sothat surface-tension effects do not arise).

More generally, we can distinguish four cases:

Table 1. Case types

Case	$\frac{dT}{dz}$	$\frac{dc}{dz}$	$\frac{d\rho}{dz}$
1	+	-	-
2(a)	+	+	-
2(b)	+	+	+
3(a)	-	-	-
3(b)	-	-	+
4	-	+	+

Case 1: It is gravitationally stable; both the gradients are stabilizing; convection is not possible since the density decreases upward.

Case 2(a) and 3(a): In these cases it is possible to have convection even though they are gravitationally stable.

Cases 4, 2(b) and 3(b): These are gravitationally unstable and correspond to Rayleigh Be'nardconvection.

Cases 2(a) and 3(a) are interesting, when both salinity and temperatureincrease upwards (i.e., stabilizing temperature gradient and destabilizingsalinity gradient), the layer may become unstable although the density profileindicates stability. The driving mechanism associated with this type ofinstability strongly depends on the different diffusive properties of heat andsalt. The phenomenon of salt fountain which occurs when hot salty water liesabove cold fresh water was discovered by Stommel, Arons and Blanchard (1956). Since then, considerable interest has been developed in this class ofhydrodynamic instabilities. In general, they come under "multicomponentconvection" or "double-diffusive convection". The experiments of Stern (1960) confirmed "salt-finger instability"where thin fingers of up and down going fluid were observed. The physicalmechanism for this can be explained as follows:

When a stably stratified horizontal fluid layer is subjected to adestabilizing salinity gradient, a parcel of fluid perturbed downwards loses its stabilizing temperature excess so much faster than its destabilizing salinityexcess due to the difference in diffusivities of heat and salt, that it cancontinue to move downwards. Thus, the setting up of convection will depend on the nature of the solutegradient (i.e., stabilizing or destabilizing). Thus, a stratified layer of a singlecomponent fluid in a porous medium is stable if the density decreasesupwards whereas a layer consisting of more than two components (multi-component system) which can diffuse relative to each other may bedynamically unstable. Thus, the resulting buoyancy force may tend to increaseor reverse the direction of the displacement of the particle from its original position and thus cause monotonic instability or over stability according as thetemperature gradient is stabilizing and the salinity gradient destabilizing orvice versa. The case of a stabilizing vertical solute gradient in a fluid saturated porous layer can serve to inhibit the onset of convection when the fluid isheated from below, for the Darcy's resistance together with the potential energy released by the horizontal temperature gradient is balanced in the absence of inertia and local acceleration. The larger the vertical solutegradient, the less the potential energy released for a given horizontal temperature gradient to balance with the Darcy's resistance. That is convection may set up at a thermal Rayleigh number considerably much lessthan that

predicted by the linear theory. The apparent reason for such a finite amplitude subcritical instability is that, motion of the fluid may distort the soluteprofile, so that away from the boundaries the stabilizing solute gradient isreduced and the destabilizing thermal gradient which is less affected by themotion because of the thermal diffusivity, may cause convection more easily,resulting in oscillatory instability and finite amplitude motions. However, subcritical instability of this type (oscillatory type) is not possible when the solute gradient is destabilizing.

The study of convection in a fluid / porous layer in the absence of penetration has received considerable attention in the past few decades and Copious literature on this is now available (Chandrasekhar (1961); Nield(1968); Rudraiah and Srimani (1976); Turner (1979); Rudraiah and Srimani(1980): Srimani 1981(hereafter referred to as I and II); Rudraiah, Srimani and Friedrich (1982); Nield&Bejan (1991); Srimani (1990); Srimani (1991); Srimani and Anamika (1991); Srimani and Sudhakar (1992); Koschmieder (1993); Srimani and Sudhakar (1996); Chevalier et al (1999); Sezai and Mohamad (1999); Payne and Song (2000); Srimani and Nagarathna (2000)Aurnou and Olson (2001); Westerburg and Busse (2001). A careful survey of the literature pertaining to penetrative convection inporous media shows that very sparse literature is available in this direction. Although penetrative convection occurs abundant in nature, surprisingly very sparse literature is available. It is presumably because of the mathematical difficulties involved therein. Therefore, in this section, only the works pertaining to penetrative convection is reviewed in brief with the motive of paving the way for furtherwork. In this review, three types of problems are investigated viz.

- I. Model for the study of the Technique of Reconstitution
- II. Linear and nonlinear penetrative convection under different constraints
- III. Thermosolutal stability caused by coupled molecular diffusion.

Review-Type I

It is observed that, in many physical problems the solution is dominated by a particular structure, and it is possible to derive a differential equation which is capable of describing the spatial and / or temporal evolution of this dominant structure. Such an evolution has its own limitations and is valid only for a restricted range of the parameters. But the Technique of Reconstitution provides a rationale for systematically making corrections to this firstapproximation. Roberts (1985) extended the method proposed by Spiegel (1981), forcorrecting such evolution equation by adding extra terms which bring newphysics into the equation. He has illustrated the technique by considering asimple pair of coupled nonlinear differential equations and has shown that theadvantage of the procedure of reconstitution is that the physical processes which previously could only slightly modify the leading-order solution can nowinteract with the dominant dynamics of the leading-order evolution equation.

Review-Type II

Penetrative convection in fluid layers: The earliest theoretical treatment of penetrative convection is the work of Veronis (1963). He has considered a simple model of an infinite layer offluid of finite depth with a linear temperature profile across it. The densitytemperature relationship is assumed to be quadratic, and the maximumdensity occurs somewhere in the interior. He has performed both linear and nonlinear stability analyses of the ice-water problem. His results predict that when instability occurs in the unstablelayer it penetrates into the stable layer as well. Multi-cells are predicted. He has found the critical Rayleigh number to be dependent on the position ofmaximum density in the layer. His limited nonlinear analysis however reveals that the layer could become unstable to finite amplitude perturbations at R<R_c. Experimental investigations pertaining to ice-water problem are conducted by Furumoto and Rooth (1961), Townsend (1964) and Myrup et al(1970). However, information pertaining to general penetrative convection in deep sea,

ocean etc. are available in the works of Warner and Telford (1967), Deardorff et al (1969), Whitehead and Chen (1970), Tankin and Farhadieh (1971), Spigel (1972), Willis and Deardorff (1974), Adrian (1975), Farmer (1975), Turner (1979) and Walden and Ahlers (1981), reviews the relevance of penetrative convection to a variety of natural phenomena. Penetrative convection motion due to the non-vanishing of thetangential stresses at the boundary of the region of inviscid instability was investigated by Taylor (1923). Encouraged by the Taylor's explanations of physical significance of the problem, Rintel (1967) has used an approximate method for finding the critical conditions for the stability of flow between counter rotating cylinders and has compared with the experimental results. He has extended the method to study (i) the flow between counter-rotatingconcentric cylinders (ii) the classical B'enard problem arising in a horizontal fluid layer with constant unstable density gradient and penetrating into a layer of fluid with constant stable density gradient situated above the unstable layer. He has concluded that the classical rigid-free boundary solution corresponds to the limiting case of the infinite stability on the top of the stable layer. Faller (1968) has commented on the work of Rintel (1967) regarding theanalogy drawn in the case of penetrative convective instability in the classical experiment of counter-rotating cylinders and the thermal convective instability with rigid boundaries when the temperature is a parabolic function of height.But Rintel (1968) has answered the comments by saying that the adjointsystems with free boundaries have the same critical values. Musman (1968) predicted the transition to finite amplitude convectionthrough his numerical calculations for the ice-water system confined betweenthe free upper and lower surfaces of infinite horizontal extent.

He employedmean field approximation for solving the nonlinear governing equations. He confirmed the results of Veronis (1963) on the subcritical instability for penetrative convection. Musman also found that for water near its freezing point with the lower boundary held at 0°C, the upper boundary was not dynamically relevant to the system of the stable portion if the layer was sufficiently thick. The works of Debler (1966) and Watson (1968) are relevant to the case of continuous parabolic profile of temperature, and it is comparison with rotating cylinder experiments. Deardorff et al (1968) have given an excellent experimental study that have a rather direct application to the finiteamplitude time-dependent geophysical problems. But the stability of thermal convection for a statically unstable layer surmounted by a statical stable layer has been attacked by Faller and Kaylor (1970) by direct numerical integration of the linearized equations of motion and heat conduction. They haveconsidered two types of vertical temperature variation: (i) a piecewise lineardistribution and (ii) a piecewise-parabolic distribution. For the first case, their initial computation showed a very large penetration of the cells into the stable layer when compared to the approximate method of Rintel (1967). However for the second case, the penetration was more than twice the penetration for the corresponding problem with counter-rotating cylinders (Harris and Reid 1964). The ratio of the vertical gradient of temperature in the upper layer to thecorresponding gradient in the lower layer was specified by a parameter winboth the cases. Their numerical procedure provides the numerical values ofthe critical Rayleigh number, the most unstable wavelengths and the depths of penetration of the convective cells into the stable region for several values ofΨ.

Sun et al (1969) has made a theoretical and an experimental study ofthermal instability of a horizontal layer of liquid with maximum density by using a density-temperature relationship that has a wider range of applicability. Theyhave considered two types of hydrodynamic boundary conditions: rigid-rigid and free-free, because of their equal importance. The Rayleigh number isfound to be dependent upon two parameters. Their study pertains to the onsetof convection and their theoretical and experimental results are in goodagreement. Their experimental study consists of the measurements of themelting rate of a block of ice with melting from both below and above. The ice-water experiment provides an example of an essentiallynonlinear fluid-dynamical problem whose behaviour

can be well understood insimple terms. Moore and Weiss (1973) have conducted a series of numerical experiments for steady twodimensional penetrative convection between freeboundaries in great detail. They have also explored time-dependentbehaviour together with the effect of different types of boundary conditions. Their results suggest the existence of subcritical motions. At high Rayleighnumbers, they have found that resonant coupling between convection and gravitational modes in the stable layer excites finite amplitude oscillations. Theyhave found a good agreement between the numerical and experimental results. They have computed Nusselt number as a function of the Rayleigh number. The two examples of penetrative convection viz., (i) the growth of aturbulent atmospheric boundary layer during early morning heating in theabsence of wind and (ii) the deepening of the surface in a large deep powerstation cooling pond, are of great importance in the present-day environmentalproblems. The dispersal of pollutants released into the atmospheric dependson the rate of growth of the boundary layer. In a similar way the penetrative convection in a cooling pond also affects the heat loss from the warm inflowand hence, the power station efficiency. A major difference between the two examples is the role of molecular diffusion and, Peclet number is thegoverning parameter, because.

(Peclet number $P_e = I_s V_s / \kappa$)

where I_s and V_s , are the turbulent length and velocity scales and κ is the molecular diffusivity.

Mollemdorf (1977) investigated Although Gebhart and thermohalineconvection in fluid mixtures that possess density maxima, neither their analysis nor their results are directly applicable to instabilities arising in infinitefluid layers. Merker et al (1979), studied the onset of convection in a horizontal water layer with maximum density effects by assuming a fifth-order polynomial for the density-temperature relation. He concluded that the critical Rayleigh numbers computed, with a simple parabolic relation are about 10% larger. The experimental results of Walden and Ahlers (1981) revealed hysteretic transition near the critical Rayleigh number for liquid helium which has a density maximum just above the super fluid transition temperature. Roberts (1985) has made a detailed analytical study of mildly penetrative convection in a horizontal layer. The model considered is ice-water convection problem. Both linear and nonlinear analyses are made through the remarkable analytic simplification that emerges from specifying the heat flux on the boundaries rather than fixing the temperature. These boundary conditions are meaningful in geographical applications, because there is no guarantee that the commonly used boundary condition of fixed temperature is appropriate. Evidently, when the sun heats the air next to the ocean or ground, a fixed heat flux boundary condition is much moreappropriate.

Another example is, Mantle convection that occurs between poorly conducting boundaries and can be modelled by fixed-heat flux boundary conditions (Chapman et.al. 1980). Roberts has made the assumption of long horizontal scales of motion which restricts to consider the stably stratified layers that are relatively, shallow. thinner than about 65% of the thickness of the unstable layer. Densitytemperature relationship is considered to be quadratic. The result of the linear stability analyses predict that long horizontal scales are preferred when the convection is mildly penetrative i.e., the overlying layer of stable fluid is not deep. Using the technique of reconstitution, he has investigated some of the physical processes of the finite amplitudeconvection. He has also calculated estimates for the maximum extent of subcriticality at which finite-amplitude convection may occur. All the studies cited above for penetrative convection was concerned with the Benard type of convection in which heat was the only diffusing component. It is well known that a fluid/porous layer with two or more diffusing components exhibit instabilities even when the total density of thefluid decreases upward. Antar (1987) has made a numerical study of penetrative doublediffusive convection, i.e., he has extended the study of penetrative

convection to fluids possessing two diffusive components. The layer is considered to beinfinite horizontal extent and has a density maximum at the interior. For the solution of the eigenvalue problem he developed a computer code, with an eight-order, variable-step, Runge-Kutta-Fehlberg initial value generator. A Newton-Raphson method was used for the iteration procedure and theorthogonalization procedure was implemented at each integration step. The densitytemperature relationship is assumed to be quadratic in the above investigation. His results predict the regions of stability and instability to both steady and oscillatory modes and are confined to the positive quarter plane of the Rayleigh and solute Rayleigh number plane. He found that the decrease in the position of maximum density in the vertical direction leads to a stabilityrange and also an increase in the regions of oscillatory instability in that quadrant. His important conclusion is that the extent of penetration of the convective motion into the stable region is diminished with the increase in solute concentration. Another important conclusion is that, dynamically similar motions exist with significant quantitative differences in the case of rigid-rigidand free-free boundary conditions.

Matthews (1988) has proposed a model for penetrativeconvection discussing the stability of an S-shaped cubic temperature profile maintained by internal heating. In his model, the unstable layer is sandwiched between the two stable fluid layers. Computations are done for free-free and rigid-rigid boundaries. His results predict that the bifurcation is supercritical. Athorough comparison of his results and those of Veronis (1963) are made and discussed. Through numerical integrations, he has examined the qualitative behaviour of the problem. Previous theoretical and experimental investigations on thermalinstability with maximum and minimum density effects are confined toRayleigh problem only. However, for thin horizontal liquid layers with an upper free surface, the onset of convection can be induced by surface-tension gradients and buoyancy forces (Pearson 1958, Neild 1964, Kobayashi 1967). Motivated by this result W and Cheng (1976) investigated the onset of cellular convection driven by surface tension and buoyancy force in ahorizontal thin liquid layer by considering the density inversion effect for water by using a cubic density-temperature relationship. The lower boundary is considered as a rigid and thermally conducting while at the upper surface Pearson's boundary conditions are imposed to facilitate the analysis. The liquid layer associated with the maximum density effect can become unstableregardless of whether the heating is from below or above. The temperature regime under the consideration is from 0° C to 30° C. Their study involve the thermal parameters λ_1 and λ_2 and three physical parameters viz., Biot number, Rayleigh number and Marangoni number. By using a numerical procedure they have made a detailed study of the linear stability problem by studying the neutral stability curves for different ranges of the parameters andthe relations connecting the physical parameters are clearly presented. Results are quite interesting.

Richard et al. (1981) considered a theoretical one-dimensional model of penetrative convection in a stable temperature stratification heated from below by assuming the partial derivations of temperature with respect to the height and time to be discontinuous at the interface. At a finite temperature gradient, the molecular diffusion, effects at low Peclet numbers are included and a numerical study is made to illustrate the relative contribution of molecular diffusion, interfacial turbulence and the 'filling' of the existing temperature stratification by the lower boundary heat flux. The results of this detailed numerical study are confirmed and verified by the available experimental data. The work of Normand and Azouni (1992) bears a close analogy withthose cited above even if the destabilizing mechanisms are different. They have provided a model for penetrative convection in which a stably stratified layer of fluid is bounded by two unstable layers. Water layer around its densitymaximum is considered and the quadratic temperature profile is maintained by internal heating. Their linear stability analysis predict that either stationary or oscillatorymodes occur at the onset of instability depending on the values of the control parameter. They have made a detailed numerical study of the two kinds of stationary models that can be attributed to a crossover between thefundamental and the first excited mode as the parameter u varies. They have discussed their results in the light of the study made by Rasenat et al. (1989). They have shown that for $\mu =$ 4.67, it prevents penetration and the instabilityremains confined in the predominant upper layer. Sudhakar (1993) has discussed double diffusive penetrativeconvection in a fluid layer by considering a nonlinear equation of state and alinear temperature profile. He has assumed both the boundaries to be stress-free and perfect conductors of heat and salt. The method employed is themodified power integral technique which is well documented in the works of Veronis (1963), I and Srimani and Sudhakar (1992). He has discussed the possible cases for the existence of single cell and multi-cells. He as shown that the penetration Rayleigh number assumes a local maximum at the value 2 of the depth parameter. His linear stability analysis gives the critical wavenumber, critical penetrative and Rayleigh numbers for different values of the depth parameter λ and solute Rayleigh number R_s. He has predicted the occurrence of subcritical motions. The heat transport curve for fixed R_s is really interesting and is valid for a wider range of the Rayleigh number.

The author has also investigated the effect of magnetic field on theonset of penetrative convection in a fluid layer by considering a linear equation of state and an S-shaped cubic temperature profile. His model predicts the critical conditions and the bifurcation phenomenon. Fourier Transform technique and fourth-order Runge-Kutta Gill method are employed. He has derived the amplitude equations resulting from the solvability conditions. He found that Prandtl as well as magnetic Prandti numbers have a strong influence on the onset of penetrative convection. He as shown that the Counter- cells which are away from the maincell are weaker in magnitude and the effect of magnetic field is to make the system more stable in general. Nishimura et al. (1995), have made a numerical study of Natural Convection of water near the density extremum for a wide range of Rayleighnumbers. Their calculations were conducted by deploying a mesh work of (62X52) staggered grid points in the (x-z) domain. The grid and time-step were varied for repeated calculations. They have considered different types of flows in their work. Kwak et al. (1998) have made a detail study of convective cool-down of a contained fluid through its maximum density temperature. They have usedtimedependent Navier-Stokes equations and have discussed the specificnumeral techniques with regard to the problem. Their numerical calculations and the computed results for Nu are consistent with the earlier results.

Penetrative Convection in porous media: Sun et al. (1969) studied the thermal instability of a horizontal layer ofliquid with maximum density by using a cubic density-temperature relationship. Sun et al. (1972) has extended the above work to include the effect of density maximum on the onset of convection in a porous medium. Only linear stability analysis is carried out by using the empirical expression of Darcy's law. The modified Rayleigh number is found to be dependent on two parameters λ_1 and λ_2 , respectively. In order to provide sufficient experimental data, Yen (1974) has made an experimental study of the effects of density inversion on free convective heat transfer in a porous medium. The experimental set up used is essentially the same as the one described in detailby Ten et al. (1972). He has found the critical Rayleigh number to be $4\pi^2$ for upper boundary at 4°C and 8°C in which case the effect of density inversion on the onset of convection gets eliminated. But the effect of density inversion is evaluated by maintaining the upper boundary temperature at 0°C. His results show that the onset of convection is dependent on the two thermal parameters which are functions of the boundary temperatures and the coefficients representing the densitytemperature ranges considered ((0° to 20°C), (0° to 35°C) and (0° to 60°C)). He has considered three sets of the parameters r_1 , r_2 , and λ_1 and λ_2 , are evaluated. The results show that the effect of densityinversion on heat transfer rate is quite significant and to decrease as thetemperature difference across the layer increases. For smallΔT, the heattransfer is found to be sufficiently small when compared to the non-densityinversion situation. Ramilison and Gebhart (1980) have studied buoyancy inducedtransport in porous

media saturated with pure or saline water at low temperatures by using an accurate and much simpler density equation which applies to both pure and saline water to a pressure level of 1000 bars, at 20°C. They have considered vertical buoyancy driven plane flows imbedded in an extensive porous medium saturated with either pure or saline water under conditions in which density extremum might occur. The authors have neglected salinity diffusion, Dufour and Soret effects for small wall-to-ambient temperature differences.

The necessary and sufficient conditions for the existence of similarity solutions are determined. They have investigated the region where buoyancy force reversal occurs and the values of R correspond to small flow reversals. The authors found the instability of the numerical routine which they adopted in the range 0. 195<R<0.4, in a region of large reversals. The authors found a large decrease in heat transfer as the buoyancy force reversal region is approached from each side. They observed the effects of convective inversion in the form of the temperature distributions to berelatively small. Encouraged by the earlier two studies (Bejan 1980a, b) of penetrativeconvection in porous media, viz., (i) the vertical penetration into a well filled with porous medium, with application to a grain storage problem and (ii) thelateral penetration into a horizontal porous structure, with application to the natural convection cooling of rotating electric windings, Kenneth Blake, AndrianBejan and Poulikakos (1984) have made a numerical study of twodimensional natural convection in a horizontal porous layer heated from below and saturated with cold water with the objective to document numerically the characteristics of natural circulation in a porous layer heated from below and also to illustrate the high number characteristics of the phenomenon.

They have considered a simple model of the moist ground trapped water under a layer of ice in winter. The layer is bounded above and below by solid walls maintained at temperature T_c and T_H such that T_H> T_C. The boundarytemperatures are such that they embrace the density maximum of pure waterat atmospheric pressure. The vertical boundaries located at x = 0 and x = L are assumed to be impermeable and adiabatic. The authors have consideredparabolic density temperature relationship and three separate series ofnumerical simulations document the effect of Rayleigh number, bottom surface temperature and the horizontal length of the porous layer on theoverall heat transfer rate vertically through the layer. In their study thegoverning equations were discretized by using the control volume formulationas given by Patankar (1980). The region of interest was covered with an array (m-2 by n-2) of square control volumes. The four boundaries were coveredwith control volumes of zero thickness. They applied the power-law scheme todetermine both the heat and mass fluxes across each of the control volumeboundaries. Their investigation predicts that the flow is multicellular and the actual number of cells depends on the Rayleigh number. The effect of cellmultiplication on the Nusselt number was also determined. They observed that as the bottom temperature T_H approaches 3.98°C, i.e., as the potentially unstable region vanishes, the natural circulation disappears. They also examined the effect of geometric aspect ratio on the flow and temperaturepatterns and found that the lateral extent of the porous layer as a relativelyweak impact on the local character of the flow.

Recent reviews of natural convection in porous media demonstrate thatthe enclosed flows are becoming a classical subfield. Poulikakos and AndrianBejan (1984) studied the penetrative convection in porous medium bounded by a horizontal wall with hot and cold spots numerically. Their study focuses on a semi-infinite isothermal porous medium heated and cooled from below periodically. Their study reports a series of numerical simulations and a scale analysis of the penetrative convection occurring along the unevenly heatedhorizontal wall of a semi-infinite porous medium. The porous medium isassumed to be locally in thermal equilibrium with the solid porous matrix. Theauthors have considered two simple functions for plate temperature viz.,cosine variation and the step function.

Their investigation records the following observations:

- i) When the horizontal wall temperature varies between alternating hotand cold spots, the natural circulation consists of a row of counter-rotating cells situated near the wall. Each cell penetrates vertically into the porous medium to a distance approximately equal to $\lambda\sqrt{R_{ah}}$ where λ is the distance between a hot spot and the adjacent cold spot and R_{ah} is the Darcy-modified Rayleigh number.
- ii) The ability of each cell to convert heat between two adjacent spotsincreases with the Rayleigh number.
- iii) Each cellis a deformed plume in the sense that the hot plume rising above a hot spot be eventually turned around and sucked into the vacuumcreated around the closest cold spot.
- iv) The heat transfer rate between two adjacent spots increasesmonotonically as the Rayleigh number R_{ah} increases

The configuration considered by the authors is most relevant inunderstanding the behaviour of underground layers heated unevenly. Sudhakar (1993) has made a detailed study of penetrative convectionin a porous layer in the presence of magnetic field. The boundaries are considered to be stress-free and perfect conductors of heat and the layer is adensely packed porous layer. He has employed the modified power integral technique and his results predict that the critical penetration Rayleigh numberincreases more rapidly with the porous parameter than the Chandrasekharnumber. The author has shown that for very large values of the Porousparameter, there exits double are multi cells depending on the proper choice ofthe parameters. Another interesting result of his investigation is thatPenetration Rayleigh number based on the thickness of the unstable layer attains a local minimum at λ =1.6. However, the penetration Rayleigh numberbased on the total depth of the fluid layer continuously increases with λ . The author has made a detailed investigation of penetrative convectionin sparsely and densely packed porous layers. He has employed Fourier-Transform technique and also Runge-Kutta Gill method for the purpose of determining the solution. He has predicted the conditions for the existence of rolls and squares and the results are discussed.

Srimani and Sudhakar (1996) have made a very detailed study of linear and nonlinear penetrative convection in a porous layer by considering a non-linear density temperature relationship. The porous layer is considered to be densely packed. They have madea detailed analysis of both linear and nonlinear theories. They have presented the heat transport curve for a wide range of the porous parameter. They haveused the modified power integral technique. Their results record the following aspects of the problem:

- i) The relaxation of the upper boundary condition results in a thick stablelayer.
- The increase in the available potential energy increases the upperboundary temperature to 8°C and further deepening of the stablelayer is reduced.
- iii) Multicells will be formed only when there is the transfer of kineticenergy from the unstable layer and this suggest that the boundary temperature should be less than 8°C.
- iv) The motion is supercritical as in the case of the ordinary porousconvection and hence 2D-rolls are preferred.

Review - Type III

The multi-component onset of convection is important in many naturally occurring phenomena and technological processes. In double diffusive convection, heat and solute diffuse at differentrates, as a result of which complex flow structures may form which have nocounterpart in buoyant flows driven by a single component. Extensiveliterature pertaining to this phenomenon is available (Fujita and Gosting(1956); Stern (1960); Miller (1966); Miller et al. (1967); Nield (1968); Hurle and Jakeman (197 1); Huppert and Manins (1972); Schechter et al (1972); Velarde and Schechter (1972); Vitaliano et al. (1972); Caldwell (1974); Turner (1974,1985);

Griffiths (1979); Antoranz and Venard (1979); Leaist and Lyons (1980); Placsek and Toomre (1980); Narusawa and Suzukawa (1981); Srimani (1981); Takao, Tsuchiya and Narasuwa (1982); McTaggart (1983); Srimani (1984, 1991); Torrones and Pearistein (1989); Anamika (1990); Chen and Su (1992); Zimmermann Muller and Davis (1992); Tanny, Chen and Chen(1994); Shivakumar (1997); Skarda, Jacqmin and McCaughan (1998);). But in Type Ill, considered in this review, an additional effect viz., theeffect of the coupled fluxes of the two properties due to irreversible thermodynamic effects is considered. This is termed as the effect of Coupleddiffusion or Crossdiffusion and Sort effect is an example of this cross-diffusion where a flux of salt is caused by a spatial gradient of temperature. In fact, Dufour effect is the corresponding flux of heat caused by a spatial gradient of temperature. Some literature (Hurle and Jakeman (1971); Skarda, Jacqmin and McCaughan (1998); Zimmermann et al (1992); Chen and Chen (1994)) in this direction are useful. McDougall (1983) has made a detailed study of Double-diffusive convection caused by coupled molecular diffusion. Theresults of his linear stability analysis, predicts that for a sufficiently largecoupled diffusion effect, fingers can form even when the concentrations of both the components make the fluid's density gradient statically stable. The conditions for the occurrence of finger as well diffusive instabilities are predicted. The results of his finite amplitude analysis reveal that for sufficiently large cross-diffusion effect, fingers do exist. Absolutely very sparse literature is available in this direction and no literature is available for a heterogenous fluid layer. The works discussed so far deal with penetrative convection in fluid and porous layers in absence of fixed-flux conditions. To the author's knowledge no literature pertaining to penetrative convection subject to nonlinear temperature / salinity profile with nonlinear density temperature and / are salinity relationship is available under different constraints in presence offixed-flux conditions. Sparse literature with some common subject is available. Therefore, an attempt is made in this Review to include all these effects with the object of providing the prevailing influences of the relevant physicalparameters on the stability of the system as well as on the bifurcation and fluidpatterns.

Acknowledgement

Authors are grateful to Late Professor P.K.Srimani for all the necessary guidance during the entire work, authors are thankful to Principal Maharani science college and Commissioner, Department of collegiate education Government of Karnataka for all the facilities provided.

REFERENCES

- Anamika, B.M. (1990) Dispersion effect on nonlinear double diffusive convection in an anisotropic porous layer, *Ph.D. Thesis, Bangalore Univ.*, India
- Antar, B.N. (1987), Penetrative double-diffusive convection, *Phys. Fluids* 30(2), 3.22
- Antoranz J.C. and Vegiar DE. MIC, (1979), Thermal difusion and convective stability: The role of uniform rotation of the container. *Phys. Fluids* 22, 1038
- Aurnou J.M. and P.L.Olson, (2001) Experiments on Rayleigh-B'enard convection, Magneto convection and rotating magneto convection in liquid gallium, J. Fluid Mech. 430, 283
- Bejan, A. (1980) a, b (a) A synthesis of analytical results for natural convection heat transfer across rectangular enclosures.(b) Natural convections in a vertical cylindrical well filled with porous medium, *Int. J. Heat & Mass Transfer*, 23,723
- Blake, K.R. A. Bejan, and D.Poulikakos, (1984), Natural convection near 4°C in a water saturated porous layer heated from below, Int.J.Heat& Mass Transfer ,27,2355
- Caldwell, D.R. (1974), Experimental studies on the onset of thermohaline convection, J. Fluid Mech. 64,347
- Chandrasekhar, S., (1961), Hydrodynamic & Hydromagnetic stability, Oxford University Press, London

- Chapman, C.J. S.Childress and M.R.E.Proctor, (1980), Nonlinear penetrative convection poorly conducting boundaries, *J.Fluid Mech*, 101,759
- Chen C.F. and T.F. Su, (1992), Effect of surface tension on the onset of convection in a double-diffusive layer, *Phys. Fluids*, 4 (11), 2360
- Chen C.F. and C.C. Chen, (1994), Effect of surface tension on the stability of a binary fluid layer under reduced gravity, *Phys. Fluids*, 6, 1482.
- Chevalier, S., D. Bernard and N.Joly, (1999), Natural convection in a porous layer bounded by impervious domains: From numerical approaches to experimental realization, *Int. J. Heat & Mass Transfer*, 42,581
- Deardorff, J.W.G.E.Willis and D.K.Lilly, (1968), Laboratory investigation of non-steady penetrative convection, *J. Fluid Mech.* 24, 165
- Debler, W. R. (1966), On the analogy between thermal and rotational hydrodynamic stability, *Fluid Mech*, 101,759
- Faller A.J. and Robert Kaylor, (1970), Numerical studies of penetrative convective instabilities, J. Geophysical research, 75,521
- Faller, A.J. (1968), Penetrative convection instabilities, *Phys. Fluids*, 11, 2062
- Farmer, D.M. (1975), Penetrative convection in the absence of mean shear, *J.Roy.,met.Soc.*101,869
- Fujita H.and L.J. Gosting, (1956), An exact solution of the equations of free diffusion in three-component systems with interacting flows, and its use in evaluation of the diffusion coefficients, *J.Chem.Soc.Am*,78,1098
- Furumotoand Rooth, (1961), Geophysical fluid dynamics, woods whole Oceanographic inst.Rep.
- Gebhart, B.and J.C.Mollendorff,(1977), A new density relations for pure and saline water, *Deep sea Res.* 24, 831
- Griffiths, R.W., (1979), The influence of a third diffusive component upon the onset of convection, *J. Fluid Mech.* 92, 659
- Harris D.L. and W. H. Reid, (1964), On the stability of viscous flow between rotating cylinders, *J. Fluid Mech.* 39, 95
- Huppert H. E.and P.C.Manis, (1973), Limiting conditions for saltfingering at an interface, *Deep sea Res.* 20, 315
- Hurle D.T. and E.Jakeman, (1971), Soret-driven thermosolutal convection, *J. Fluid Mech.* 47, 667
- Kobayashi, (1967), Maths, Phys. 18, 45
- Kwak, H.S. J.M.Kuwahara and J.M.Hyun, (1998), Convective cooldown of a contained fluid through its maximum density temperature, *Int.J.Heat Mass Transfer*, 41,323
- Leaist D.G.and P.A.Lyons, (1980), Multi-component diffusion in dilute solutions of mixed electrolytes, *Aust.J. Chem.* 33,1869
- Matthews, P.C. (1988), A model for the onset of penetrative convection, *J. Fluid Mech.* 188, 571
- Merker, G.P.WAS and PhOGaOnGal 4. U (1979), Onset of convection in a horizontal water layer with maximum density
- Miller, L. (1966), Instablites in muticomponent liquid diffusion, J. South African Chem. Inst. 19, 125
- Miller, L. T.H.Spurling and E.A.Mason, (1967), Instabilties in ternary difsuion, *Phys. Fluid* .10, 1809
- Moore D.R. and N.O. Weiss, (1973), Nonlinear penetrative convection, J. Fluid Mech. 61, 553
- Muskat, M. (1937), The flow of homogeneous fluids through porous media, *Textbook from McGraw-Hill, New York*
- Musman, S. (1968), Penetrative convection, J. Fluid Mech. 31, 343
- Myrup, L. D.Gross, L.S.Hoo and W. Goddard, (1970), Weather 25, 150
- Narusawa U. and A.Y. Suzukawa, (1981), Experimental study of double-diffusive cellular convection due to uniform lateral heatflux, J. Fluid Mech. 113, 387
- Nield, D.A. (1964), Surface tension and buoyancy effects in cellular convection, *J. Fluid Mech.* 19, 341
- Nield, D.A. (1968), Onset of thermohaline convection in a porous medium, *Water Resources Res.*4,553
- Nield, D.A.and A. Bejan,(1991) ,Convection in porous media, Springer. Verlag, New York

- Nishumura, T., E.Wake and Fukumori, (1995), Natural Convection of water near the density extremum for a wide range of Rayleigh numbers, *Num.Heat Transfer*, 27,443
- Normand C. and Aza Azouni, (1992), Penetrative convention in an internally heated layer of water near the maximum density point, *Phys.Fluids A* 4(2),243
- Patankar, S., (1980), Numerical Heat Transfer and fluid flow, Textbook from Mc Graw-Hill, New York
- Payne L.E. and J.C.Song, (2000), Spatial decay for a model of double diffusive convection in Darcy and Brinkman flows. Zamp. Z.angew, Math. Phys. 51,867
- Pearson, J.R.A. (1958), On convection cells induced by surface tension, *J. Fluid Mech.* 4, 489
- Placsek, S.A. and J.Toomre, (1980), Nonlinear evolution and structure of salt fingers. In Marine Turbulance (ed. J.C.J. Nihoul), Elegator, 193
- Poulikakosand D. A.Bejan, (1984), Penetrative convection in porous medium bounded by a horizontal wall with hot & cold spots, *Int.* J. Heat & Mass Transfer, 27,1749
- Ramilison J.M. and B.Gebhart, (1980), Buoyancy induced transport in porous media saturated with pure or saline water at low temperatures, *Int. J. Heat & Mass Transfer*, 23,1521
- Rasenat, S., F.H.Busse and I.Rehberg, (1989), Theoretical and experimental study of double-layer convection, *J. Fluid Mech.* 119, 519
- Richard, A.Denton and R.IanWood, (1981), Penetrative convection at low Peclet number, *J. Fluid Mech.* 113, 1
- Rintel, (1967), Penetrative convection instabilities, *Phys.Fluids*, 2062 Roberts, A.J. (1985), An introduction to the technique of Reconstitution, *SIAM.J.Math.Anal*.16(6),1243
- Roberts, A.J. (1985),(a) An analysis of near marginal, mildly penetrative convection with heat flux prescribed on the boundaries, *J. Fluid Mech.* 158, 71
- Rudraiah N. and P.K. Srimani, (1976), Thermal convection of a rotating fluid through a porous medium. *Vignana Bharathi*, 2,11
- Rudraiah N. and P.K. Srimani, (1980), Finite amplitude cellular convection in a fluid saturated porous layer, *Proc. Roy. Soc.* Lond. A.373, 199
- Rudraiah, N. P.K. Srimani and Friedrich, (1982), Finite amplitude convection in a two-component fluid saturated porous layer, *Int.J. Heat & Mass Transfer*, (5)25,715
- Schechter, R.S., I. Prigogine and J.R. Hamm, (1972), Thermal diffusion and convective stability, *Phys. Fluids.* 15, 371
- Sezai I. and A. A. Mohamad, (1999), Three-dimensional doublediffusive convection in a porous cubic enclosure due to opposing gradients of temperature and concentration, *J. Fluid. Mech.* 400, 333
- Shivakumara, A. V. (1997), Asymptotic solutions for double diffusive and magneto-convection problems in fluid and porous layers, *Ph.D. Thesis, Bangalore Univ. India*
- Skarda, J.R.L. D. Jacqmin and F.E.McCaughan, (1998), Exact & approximate solution to the double-diffusive Marangoni Benard problem with cross-diffusive, *J.Fluid Mech.* 366, 109
- Spiegel, E. A. (1981), Physics of convection. Tech. Rep. WHOI-81-102, Woods Hole Oceanographic Inst., Woods Hole, Md., 43
- Srimani, P.K. (1984), The effect of Coriolis force on nonlinear thermal convection in an anisotropic porous layer, Proc. 29th ISTAM Conf. India
- Srimani, P.K. (1990), Marangoni porous convection in a cylindrical geometry. Part 1 & Part 2, Ind. J.Pure&Appl.Math., 21 (8), 763
- Srimani, P.K. and N.Nagarathna, (2000), A general model for the Technique of Reconstitution (TOR), Proc. 15th Ann. Conf. RMS, Univ. Madras, 5-7

- Srimani, P.K., (1981), Finite amplitude cellular convection in a rotating and non-rotating fluid saturated porous layer, *Ph.D. Thesis, Bangalore Univ. India*
- Srimaniand P.K. H.R.Sudhakar, (1992), Transitions in heat transfer in a rotating porous layer, *Ind. J. Pure & Appl. Math.* 23 (6), 443
- Srimaniand P.K.H.R.Sudhakar, (1996), Linear & nonlinear penetrative convection in a porous layer, *Ind. J. Pure & Appl. Math.* 27 (5)
- Stern, M.E. (1960), The salt-fountain and Thermohaline convection, *Tellus* 12, 599
- Sudhakar, H.R. (1993), Linear & nonlinear penetrative convection in a porous layer, *Ph.D. Thesis, Bangalore Univ, India*
- Sun L. and C.Tien, (1972), Onset of convection in a porous medium containing liquid with a density maximum, *Proc. 4th Int. Heat Trans. Conf. Paris Versailler* V. IV Nc-211
- Sun, Z. S., C. Tien and Y. C.Yen, (1969), Thermal instability of horizontal layer of liquid with maximum density, *Alche J.* 15(6), 910
- Taggart, C.L.MC (1983), Convection driven by concentration and temperature dependent surface tension, *J. Fluid Mech.* 134, 301
- Tanny, J. C.C. Chen and C.F.Chen, (1995), Effects of interaction between Marangoni and double-diffusive instabilities, *J. Fluid Mech.* 303, 1
- Taylor, G.I. (1923), Stability of viscous liquid contained between two rotating cylinders, Phil. Trans. Roy. Soc. London A 223
- Ten, C. Y. C.Yen and Dotson, (1972), Free convection heat transfer in a horizontal layer of liquid; the effect of density, *Int. J. Heat & Mass Transfer*, 22, 505
- Torrones and Perlstein, (1989), The onset of convection in a multi component fluid layer, *Phys. Fluids A* 1 (5) 845.
- Townsend, A.A. (1964), Natural convection in water over an ice surface, *Quart.J. Roy. Met. Soc.* 90, 248.
- Turner, J.S. (1979), Buoyancy effects in fluids, Camb. Univ. Press. Cambridge
- Turner, J.S. (1984), Double diffusive phenomena, Ann. Rev. Fluid Mech. 6, 37
- Turner, J.S. (1985). Multicomponent convection, Ann. Rev. Fluid Mech. 17, 11
- Velarde M.G. and R.S.Schechter, (1972), Thermal diffusion and convective stability, *Phys. Fluids*. 15, 379
- Veronis, G. (1963), Penetrative convection, Astrophys. J. 127, 641
- Vitagliano, V., A.S.Zagar, R.Sartorio and M.Corcione, (1972), Dissipative structures and diffusion in ternary systems, *J. Phys. Chem.* 76, 2050
- Walden, R.W.and G.Ahlers, (1981), Non-Boussinesq and penetrative convection in a cylindrical cell, J. Fluid Mech. 109, 89
- Warner R.J. and J.W.Telfored, (1967), Convection below cloud base, J. Atmos. Sci. 24, 374
- Watson, P.M. (1968), Classical cellular convection with a spatial heat source, *J. Fluid Mech.* 32, 399
- Westerburg M. and F. H.Busse, (2001), Finite amplitude convection in the presence of finitely conducting boundaries, *J. Fluid Mech.* 432, 351
- Wu R.S. and K.C. Cheng, (1976), Maximum density effects on thermal instability induced by combined buoyancy and surface tension, *Int. J. Heat & Mass Transfer*, 19, 559
- Yen, Y.C. (1974), Effects of density inversion as free convective heat transfer in porous layer heated from below, *Int. J. Heat & Mass Transfer*, 17, 1349
- Zinmmermann, G. U.Muller and S.A. Davis, (1992), Benard convection in binary mixtures with Soret. effect and solidification, *J.Fluid Mech.* 238, 657