
 
 
 
 

 

 
 

 
 
 
 

RESEARCH ARTICLE 
 

COMMON COINCIDENCE POINTS FOR TWO PAIRS OF R-WEAKLY COMMUTATIVE 
MAPPINGS ON B2-MULTIPLICATIVE METRIC SPACE  

 

*Manish Kumar 
 

(Department of Mathematics), (Government Degree College Nanauta, Saharanpur) 
 
 
 

ARTICLE INFO    ABSTRACT 
 

 

In [22], Kumar introduced the notion of b2-multiplicative metric space. Czerwik [2] generalized the 
concept of metric space and put the idea and terminology of b-metric space. In [15] B. Surender Reddy 
et al presented the concept of 2-multiplicative metric space. In this paper we introduce the concept of R-
weakly commutative mappings on b2-multiplicative metric space. Also we prove a common 
coincidence point theorem for two pairs of R-weakly commutative mappings on b2-multiplicative 
metric space. 
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INTRODUCTION 
 
Grossman and Katz [11] introduced a new kind of Calculus called 
multiplicative (or non-Newtonian) calculus by interchanging the roles 
of subtraction and addition with the role of division and 
multiplication, respectively. By using the ideas of Grossman and Katz 
[11], Bashirov et al. [7] defined the notion of multiplicative metric. 
Czerwik [2] introduced the notion of b-metric space which is a 
generalization of a metric space. There are some fixed point theorems 
in b-metric spaces. Huang et al. [14] introduced fixed point results for 
rational Geraghty contractive mappings; Ozturk and Turkoglu [20] 
studied fixed points for generalized alpha-psi-contractions; Shatanawi 
et al. [22] established a study of contraction conditions using 
comparison functions. The notion of a 2-metric space was introduced 
by Gahler, in [4]. Several fixed-point results were obtained in 
[1,2,3,4,5 6], as a generalization of the concept of a metric space. A 2-
metric is not acontinuous function of its variables, whereas an 
ordinary metric is. The basic philosophy is that since a 2-metric 
measures area, a contraction should send the space towards a 
configuration ofzero area, which is to say a line. Z. Mustafa 
introduced a new type of generalized metric space called b2-metric 
space, as a generalization of the 2-metric space, [8]. In[15] B. 
Surender Reddy et al  presented the conception of 2-multiplicative 
metric space and 2-multiplicative Normed linear space and 
investigate topological properties in 2-multiplicative NDLS. In [22], 
Kumar introduced the notion of b2-multiplicative metric space. The 
aim of this paper is to introduce the concept of R-weakly 
commutative mappings on b2-multiplicative metric and then we 
prove a common coincidence point result for two pairs of R-weakly 
commutative mappings on b2-multiplicative metric space. 
 

Preliminaries 
 
Definition 1.1. [4, 9] Let X be a non-empty set and d :X×X×X→R+be 
a map satisfying the following properties 
 

(i) d(x,y,z) = 0if at least two of the three points are the same. 
(ii) For x,y∈X such that x ≠y there exists a point z ∈X such 

that d(x,y,z)≠0. 
(iii) symmetry property: for x,y,z∈X, d(x,y,z) = d(x,z,y) = 

d(y,x,z) = d(y,z,x) = d(z,x,y) = d(z,y,x). 
(iv) rectangle inequality: d(x,y,z)≤d(x,y,t) + d(y,z,t) + d(z,x,t) 

for x,y,z,t∈X. 
 

Then d is a 2-metric and (X,d)is a 2-metric space. 
 
Definition 1.2. [8] Let X be a non-empty set and d :X×X×X→R+be a 
map satisfying the following properties  
 

(i)  d(x,y,z) = 0if at least two of the three points are the same. 
(ii)  For x,y∈X such that x ≠y there exists a point z ∈X such that 

d(x,y,z)≠0. 
(iii) symmetry property: for x,y,z∈X, d(x,y,z) = d(x,z,y) = 

d(y,x,z) = d(y,z,x) = d(z,x,y) = d(z,y,x). 
(iv) s-rectangle inequality:there exists s ≥1such that 

d(x,y,z)≤s[d(x,y,t) + d(y,z,t) + d(z,x,t)] for x,y,z,t∈X. 
 
Then d is a b2-metric and (X,d)is a b2-metric space 
If s=1, the b2-metric reduces to the 2-metric. 
 
Definition 1.3. [10] Let X be a non-empty set and d :X×X×X→R+be 
a map satisfying the following properties: 
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(i)  d(x,y,z) = 0if at least two of the three points are the same. 
(ii) For x,y∈X such that x ≠y there exists a point z ∈X such that 

d(x,y,z)≠0. 
(iii) symmetry property: for x,y,z∈X, d(x,y,z) = d(x,z,y) = 

d(y,x,z) = d(y,z,x) = d(z,x,y) = d(z,y,x). 
(iv) modified rectangle inequality:there exists α,β,γ≥1such that 

d(x,y,z)≤αd(x,y,t) + βd(y,z,t) + γd(z,x,t)] for x,y,z,t∈X. 

 
Then d is a generalized b2-metric and (X,d)is a generalized b2- metric 
space. 

 
Definition 1.4.[16] Let X be a nonempty set and let s ≥ 1 be a given 
real number. A mapping m: X × X → [1, ∞) is called a b-
multiplicative metric if the following conditions hold: 
 
(m1) m(x, y) > 1 for all x, y ∈ X with x ≠ y and m(x, y) = 1 if and 
only if x = y;  
(m2) m(x, y) = m(y, x) for all x, y ∈ X;  
(m3) m(x, z) ≤ m(x, y)s · m(y, z)s for all x, y, z ∈ X.  
 
The triplet (X, m, s) is called a b-multiplicative metric space. 
 
Definition 3.1[15]: A product 2-metric on X is a mapping ¯h : X × X 
× X → R+ that satisfies the following conditions.  
 

(i) h(ϑ1, ϑ2, ϑ3) ≥ 1, ∀ ϑ1, ϑ2, ϑ3 ∈ X and h(ϑ1, ϑ2, ϑ3) = 1 
when two of the three elements ϑ1, ϑ2, ϑ3 ∈ X are equal  

(ii) h(ϑ1, ϑ2, ϑ3) = h(ϑ1, ϑ3, ϑ2) = h(ϑ2, ϑ1, ϑ3) = ... ∀ ϑ1, ϑ2, ϑ3 
∈ X 

(iii)  h(ϑ1, ϑ2, ϑ3) ≤ h(ϑ1, ϑ2, a).h(ϑ1, a, ν3).h(a, ϑ2, ϑ3) ∀ ϑ1, ϑ2, 
ϑ3, a ∈ X.  

 
The pair (X, h) is known as a product 2-MCS. 

 
Definition 3.1[22]: Let X be a nonempty set and let s ≥ 1 be a given 
real number. A mapping m: X × X × X → [1, ∞) is called a b2-
multiplicative metric if the following conditions hold: 
 
(m1) m(x, y, z) > 1 for all x, y, z∈ X  and m(x, y, z) = 1 when two of 
the three elements x. y.      
 
z∈ X are equal;  
(m2) m(x, y, z) = m(p(x, y, z)) for all x, y, z∈ X and p(x, y, z) is any 
permutation of x, y, z;  
(m3) m(x, y, z) ≤ m(x, y, a)s · m(x, a, z)s· m(a, y, z)sfor all x, y, z, a∈ 
X.  
 
The triplet (X, m, s) is called a b2-multiplicative metric space. 
 
Example 2.1[22]. Let X = [0, ∞). Define a mapping ma: X × X× X → 
[1,∞), ma(x, y, z) = 𝑎୫୧୬ {(௫ି௬)మ,(௬ି௭)మ,(௭ି௫)మ} , where a > 1 is any 
fixed real number. Then for each a, ma is b2-multiplicative metric on 
X with s = 2. Note that ma is not a 2-multiplicative metric on X.  
 
Let (X, m, s) is a b2-multiplicative metric space. Then the 
multiplicative open and closed 2-ball of radius ε > 1 having center at 
x and y is of the form: Bε(x, y) = {a∈ X : m(x, y, a) < ε} and Bε(x, y) 
= {a∈ X : m(x, y, a) ≤ ε} respectively.   
 
Let {xn} be a sequence in a b2-multiplicative metric space (X, m, s). 

 
1. {xn} is said to be b2-multiplicative convergent to x∈X, 

written as limnxn=x, if for alla∈ X limnm(xn,x,a)=0. 
2. {xn} is said to be a b2-Cauchy sequence in X if for 

all a∈X, limn. m d(xn,xm,a)=0. 
3. (X, m, s) is said to be b2-complete if every b2-Cauchy 

sequence is a b2-convergent sequence. 
 

RESULTS 
 
Definition3.1: Let (X, m, s) be a b2-multiplicative metric space. Two 
mappingsA, B : X → X are said to be R-weakly commutative if 
m(ABx, BAx, a)≤m(Ax, Bx, a) 
for all x, a ∈X. 
 
Theorem 3.1. Let (X, m, s) be a complete b2-multiplicative metric 
space. Let A, B, S, T : X → X be mappings such that for each x, y, 
a∈X,   
 

(i) AX ⊆ TX and BX ⊆ SX; 
(ii) The pairs {A, S} and {B, T} are R-weakly commutative; 
(iii) m(Ax, By, a) ≤ max{m(Sx, Ty, a), m(Sx, Ax, a), m(Ty, By, 

a), 
m(Sx, By, a)1/2s · m(Ty, Ax, a)}κ 

 
where κ ∈ [0, 1/s). 

 
Then the pairs {A, S} and {B, T} has acommon coincidence point in 
X. 
 
Proof. As we have x0∈ X such that (x0, x1, a) ∈ Ea, where y0= Ax0= 
Tx1andx2∈ Xs. t. y1= Bx1= Sx2 and thus we get sequences {xn} and 
{yn} such that 
 
 y2n= Ax2n = Tx2n+1and y2n+1= Bx2n+1= Sx2n+2n = 0, 1, 2, 3, ……. 
From (1), we have  
m(y2n, y2n+1, a) = m(Ax2n, Bx2n+1, a)  
≤ max{m(Sx2n, Tx2n+1, a), m(Sx2n, Ax2n, a), m(Tx2n+1, Bx2n+1, a),  
m(Sx2n, Bx2n+1, a)1/2s · m(Tx2n+1, Ax2n, a)}κ 
= max{m(y2n-1, y2n, a), m(y2n-1, y2n, a), m(y2n, y2n+1, a),  
m(y2n-1, y2n+1, a)1/2s · m(y2n, y2n, a)}κ 
= max{m(y2n-1, y2n, a), m(y2n-1, y2n, a), m(y2n, y2n+1, a)}κ 
= m(y2n-1, y2n, a)κ. 
Also, we have 
m(y2n+1, y2n+2, a) = m(Bx2n+1, Ax2n+2, a)= m(Ax2n+2, Bx2n+1, a)  
≤ max{m(Sx2n+2, Tx2n+1, a), m(Sx2n+2, Ax2n+2, a), m(Tx2n+1, Bx2n+1, a),  
m(Sx2n+2, Bx2n+1, a)1/2s · m(Tx2n+1, Ax2n+2, a)}κ 
= max{m(y2n+1, y2n, a), m(y2n+1, y2n+2, a), m(y2n, y2n+1, a),  
m(y2n+1, y2n+1, a)1/2s · m(y2n, y2n+2, a)1/2s}κ 
= max{m(y2n, y2n+1, a), m(y2n+1, y2n+2, a), m(y2n, y2n+1, a)}κ 
= m(y2n, y2n+1, a)κ. 
So in general we get 
m(yn, yn+1, a)≤m(yn-1, yn, a)k(2) 
repeating application of (2) yields 
m(yn, yn+1, a) ≤𝑚(𝑦଴, 𝑦ଵ, 𝑎)௞೙

 
 
Continuing in the same way, we construct a sequence {xn} in X such 
that  
xn+1 = fxn, (xn, xn+1, a) ∈ E and m(xn, xn+1, a)≤𝑚(𝑥଴, 𝑥ଵ, 𝑎)௞೙

 for each n 
∈ N.  
 
Let m, n ∈ N, then by themultiplicative triangular inequality, we get  
 
m(yn, yn+m, 
a)≤𝑚(𝑦௡ , 𝑦௡ାଵ, 𝑎)௦೙

.
𝑚(𝑦௡ାଵ, 𝑦௡ାଶ, 𝑎)௦೙శభ

… … … . . 𝑚(𝑦௡ା௠ିଵ, 𝑦௡ା௠, 𝑎)௦೙శ೘
 

≤𝑚(𝑦଴, 𝑦ଵ, 𝑎)(௞௦)೙
.𝑚(𝑦଴, 𝑦ଵ, 𝑎)(௞௦)೙శభ

… … … . . 𝑚(𝑦଴, 𝑦ଵ, 𝑎)(௞௦)೙శ೘
 

≤𝑚(𝑦଴, 𝑦ଵ, 𝑎)
(ೖೞ)೙

భషೖೞ  
 
Letting n → ∞, in above inequality, we get m(yn, yn+m, a) →b2 1. 
Hence the sequence {yn}, and hence it’s sub-sequence is 2-
multiplicative Cauchy sequence. By the completeness of T(X), Ax2n= 
Tx2n+1→b2y = Tx for some x∈ X. 
 
m(Sx2n, Tx, a)≤m(Sx2n, Tx2n+1, a)s. m(Tx2n+1, Tx, a)s

. m(Sx2n, Tx, 
Tx2n+1)

s→1 as n →∞. 
Hence Sx2n→ Tx as n →∞. 
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Now we have  
 
m(y, Bx, a)≤ m(y, Ax2n, a)s · m(y, Bx, Ax2n)

s · m(Ax2n, Bx, a)s 
 ≤ m(y, Ax2n, a)s · m(y, Bx, Ax2n)

s · max{m(Sx2n, Tx, a), 
m(Sx2n, Ax2n, a),  
m(Tx, Bx, a), m(Sx2n, Bx, a)1/2s · m(Tx, Ax2n, a)}κs 

              = 1.1.max{1, 1, m(y, Bx, a)}ks 

which gives m(y, Bx, a) = 1 otherwise we get a contradiction  m(y, 
Bx, a)≤ m(y, Bx, a)ks. So we get Bx = y = Tx. Since BX ⊆ SX, there 
exists an element z∈ X such thatTx = Bx  = Sz. 
We have 
m(Az, Sz, a) = m(Az, Bx, a)≤ max{m(Sz, Tx, a), m(Sz, Az, a), m(Tx, 
Bx, a), 
m(Sz, Bx, a)1/2s · m(Tx, Az, a)}κ 

= max {1, m(Az, Sz, a), 1, m(Az, Sz, a)}k 
which gives m(Az, Sz, a) = 1 otherwise we get a contradiction m(Az, 
Sz, a) ≤ m(Az, Sz, a)k. 
So we obtain Az = Sz. Thus Az = Sz = Tx = Bx = u. 
Now by R-weakly commutativity of the pairs {A, S} and {B, T} we 
get  
m(Au, Su, a) = m(ASz, SAz, a)≤ m(Az, Sz, a) = 1 
m(Bu, Su, a)=m(BTx, TBx, a)≤ m(Bx, Tx, a) = 1 
which gives Au = Su and Bu = Tu.  
Hence u is a common coincidence point of {A, S} and {B T} and thus 
the theorem proved. 
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