

RESEARCH ARTICLE

HARDWARE IMPLEMENTATION OF DRAGON – A FAST WORD BASED STREAM
CIPHER FOR WIRELESS SENSOR NETWORKS

Kayalvizhi, R., Vaidehi. V., Charan Kumar, U., Venkat Dubash, L. and Dinesh Chara, R. J.

Anna University, MIT campus

 ARTICLE INFO ABSTRACT

This paper presents the hardware implementation of Dragon – a fast word based stream cipher, for use
in wireless sensor networks. Dragon is a highly efficient word based stream cipher which takes a 128 or
256 bit key and 128 or 256 bit Initialization vector as input and produces a 64-bit key stream for each
round of operation. Dragon is resistant to various forms of attacks. This paper introduces an
implementation of Dragon in FPGA/Xilinx, whose memory occupancy is only 2KB which is less than
the available memory of MICA2 sensor board, which is 4KB, giving compatibility for use in sensor
networks due to its low complexity and high speed. The time taken for encryption is found to be 320ns
due to the parallelism introduced in the hardware model and giving a data rate of 150.92MByte per
second which is also compatible with 4G networks.

Copyright, AJST, 2013, Academic Journals. All rights reserved

INTRODUCTION

The Dragon is a fast word based stream cipher which produces
key stream in 64-bit words. Traditionally stream ciphers
generate the key stream bit by bit. But Dragon produces the
key stream in 64-bit words which allows it to combine the
advantages of both block and stream ciphers. Also stream
ciphers are generally based on a linear feedback shift register
(LFSR) and produce statistically predictable outputs. Also bit
based LFSRs are very slow. So Dragon uses a Non-linear
feedback shift register (NLFSR) in its internal state which
introduces non-linearity in the internal state, in addition to a
non-linear filter function. The general structure of Dragon uses
two blocks-a large internal state and an update function. The
large internal state in Dragon makes the expected period
length to be very large 2512. There is also a 64-bit counter with
expected period 264, which is incremented once for each
iteration. So the final expected period comes to about 2576. For
a single value of Key and IV, 264 separate key streams can be
generated, which is a very small fraction of the expected
period, thus preventing key stream collisions.

The existing algorithms for incorporating security in wireless
sensor networks are MAC, TESLA, KAZUMI and ECC.
These algorithms use key exchange methods like Diffie-
Helman which are very processor intensive. All these add
confusion, diffusion and non-linearity making the memory
utilization as well as the power requirements very high. The
proposed hardware model introduces high complexity just by
using non-linearity and diffusion. The memory occupied and

*Corresponding author: R Kayalvizhi
Anna University, MIT campus

the data rate achieved have been calculated which outperform
those of existing algorithms. Concerning with security of the
algorithm, this model is found resistant to flooding attacks and
gossiping attacks. Since the key and feedback are taken
separately from the output, Dragon prevents the possibility of
birthday paradox. The Dragon uses the same structural block
containing the internal state and F-function for both key
initialization and key generation, with only changes in the taps
taken from the internal state and the feedback taken from the
output of the F-function changing for each block. This feature
of Dragon can be used to make the hardware implementation
much simpler. The F-function too can be implemented as a
parallel structure which improves the speed of processing.

The mathematical functions used are only XOR and 232

modulo addition, which makes the complexity much simpler.
Thus the hardware implementation of Dragon seems to work
much faster than software implementations. Also the memory
of requirements of Dragon are also very less with only two S-
boxes which need to be remembered. The G and H functions
can be implemented as look-up tables. So the total memory
requirements of Dragon are found to be less than 4KB making
it suitable for use in constrained environments like sensor
networks. Also Dragon is efficient for usage in environments
where frequent re-keying is necessary. Power requirements are
also considerably low since the algorithm uses only non-
linearity and diffusion. So this implementation of Dragon
proves to be efficient for use in sensor network environment.
Section 2 elaborates on the specifications of Dragon. Section 3
introduces the hardware architecture and design details.
Section 4 describes the design summary and compares the
performance of software and hardware implementations.

ISSN: 0976-3376

Asian Journal of Science and Technology
Vol. 4, Issue 07, pp.023-026, July, 2013

Available Online at http://www.journalajst.com

ASIAN JOURNAL OF
SCIENCE AND TECHNOLOGY

Article History:

Received 16th April, 2013
Received in revised form
28th May, 2013
Accepted 03rd June, 2013
Published online 19th July, 2013

Key words:

FPGA/Xilinx,
Dragon
Low complexity and
High speed.

Specification of Dragon

Dragon consists of two functional blocks--- the Key
initialization and Key generation block. The Dragon takes a
128 or 256 bit Key and 128 or 256 bit IV as input [1].

Key Initialization

The key initialization block receives the Key and IV and
generates the 1024-bit internal state by concatenation of the
Key and IV. The internal state is divided into eight words of
128 bits or four words of 256 bits in the internal state.
Considering the 128-bit case, which has been implemented in
this paper, the 1024 bit internal state has been divided into
eight 128-bit words labeled W0, W1………W7. The inputs to
the F-function a, b, c, d are derived from the taps (0, 4, 6, 7)
taken from the internal state. The inputs e and f are derived
from the counter M. The counter M is a 64-bit incremental
counter which is initialized to a constant value at the start of
the Key setup process. This block makes extensive use of the
F-function. The outputs of the F-function are a’, b’, c’, d’, e’,
f’ all 32-bit words. The outputs a’, b’, c’, d’ are given as
feedback to the internal state. The counter is updated with the
values of e’ and f’. The process of the Key initialization
process is shown below.

Figure 1. Key initialization

Here x’ refers to the swapping of the lower and the upper
values of x. x- refers to the complement of x. The final values
of the internal state and the final counter value are given as
input to the key generation block.

The F-function

The filter function in Dragon consists of three stages. The Pre-
mixing, S-box and the Post-mixing stages. The inputs to the F-
function are six 32-bit words a, b, c, d, e, f which are subjected
to diffusion through the G and H functions which are two non-
linear 32×32 mappings. The F-function functions as both the
update function and the non-linear function. The feedback
factor given back to the internal state is taken from the outputs
of the F-function.

Figure 2. F function

The G and H functions are constructed from two 8×32-bit s-
boxes, S1 and S2 to form virtual 32×32 s-boxes. The G
function contains three S1s and one S2, while the H functions
have three S2s and one S1. The 32-bit input is broken into four
bytes. Each byte is passed through an 8 × 32 s-box and the
four 32-bit outputs combined using binary addition. G and H
functions are defined as

Figure 3. G and H functions

Key stream generation

The final value of the internal state and the counter M, from
the key initialization process is given as input to this block.
The counter which is a 64-bit value adds to the complexity by
incrementing once for each iteration.

Figure 4. Key generation

The internal state is divided into 32×32-bit words denoted by
B0, B1,………B31. The words B0, B9, B16, B19, B30and

024 Asian Journal of Science and Technology Vol. 4, Issue 07, pp. 023-026, July, 2013

B31which form a full positive difference set are taken from the
internal block to form the inputs a, b, c, d, e, f to the F-
function. The feedback value is taken from outputs b’ and c’,
while the values e’ and f’ are taken as the 64-bit Key value.
After the feedback has been given, the whole internal state is
shifted left word by word. A 64-bit key stream is produced for
each iteration of this block.

Architecture of the Dragon functional blocks

The proposed architecture of Dragon consists of the following
two blocks for Key initialization and Key generation. Both
blocks perform the same functions with difference in the taps
for the input and the feedback from the output.

Figure 5. Hardware architecture

The S-box has been implemented as look up table to reduce
the propagation delay during each memory read. There is a
1024-bit register provided to operate on the input and output
data, to introduce parallelism by working on each word
simultaneously. The Implementation of the three stages inside
the F-function have been implemented in such a way that the
output of all three stages – Pre mixing, S-box and Post mixing
are produced in a single clock cycle, thus introducing a
parallelism in each stage of the encryption and decryption
process. Initially the key and IV are given as input to the Key
initialization block. The steps 1 and 2 mentioned in the figure
1 are performed inside the R1 block. The steps 3-8 are
performed 16 times during the key initialization process. Then
the final values of the key initialization block are transferred to
the key generation block as input and for each iteration of this
block a 64-bit key stream is generated. An arbitrary 48-bit
plain text is then encrypted by performing XOR with the key
stream and then transmitted. At the receiver the cipher text is
decrypted by performing XOR with the key stream produced
at the receiver by running Dragon.

Design summary of Dragon in Xilinx

The Dragon stream cipher has been implemented in
Xilinx/FPGA using verilog code. As shown in figure 6 the
time taken for key setup, Encryption and Decryption has been
found to be 340ns, 320ns and 320 ns from the timing diagram.
There are two counters used. The first counter on
decrementing to zero completes the key setup. The second
counter which starts at that instant decrements to zero,
generating the 64-bit key stream for each count, which is
shown by the variable key gen [63:0] in Figure 6. By giving an
arbitrary 48-byte input data, the number of clock cycles taken
for are found to be 32 for encryption and decryption. Using the
frequency of operation of the device which is 100Mhz, the
throughput has been calculated by dividing the frequency of
operation of the device by the number of clock cycles per byte.
The throughput for this implementation in FPGA device

Figure 6. Simulation of Key generation in Xilinx

025 Asian Journal of Science and Technology Vol. 4, Issue 07, pp. 023-026, July, 2013

3s1000epq208-5 is found to be 150.92 Mbytes per second.
This is compared with the software implementation using a 8-
Mhz microcontroller in Table 1 and Table2.

Table 1. Comparison of performance in terms of number of
clock cycles

Process 8-Mhz microcontroller
(software) in CPU cycles

Xilinx/FPGA
in clock cycle

Key setup 2136 34
Encryption 24227 32
Decryption 24222 32

Table 2. comparison of performance in terms of throughput

Process 8-Mhz microcontroller Xilinx/FPGA
Encryption 42.267KB/sec 150.92MB/sec
Decryption 42.276KB/sec 150.92MB/sec

The simulation of key generation obtained in 32 clock cycles
is shown in Figure 6.

Conclusion

Thus the Dragon stream cipher has been implemented in
hardware and the performance analysis has been done. Based
on the memory occupancy which is less than 4KB, the speed
and the board utilization, it is inferred that the hardware model
is suitable for use in wireless sensor networks. The device
summary is shown below.

Device utilization summary:

Number of slices 17663 out of 22358 79%
Number of flip flops 7040 out of 9312 75%
Number of LUTs 32565 out of 40710 80%
Number used as Shift registers 128
Number of IOs 2434
Number of bonded IOBs 2433 out of 4590 53%
IOB Flip Flops 2048
Number of GCLKs 6 out of 24 25%

REFERENCES

K. Chen, M. Henricksen, W. Millan, J. Fuller, L. Simpson, E.

Dawson, H. Lee and S. Moon. “Dragon: A fast word
based stream cipher”. ECRYPT Stream Cipher Project
Report 2005/006.

Mark Luk, Ghita Mezzour, Adrian Perrig, Virgil Gligor,” Mini
Sec: A Secure Sensor Network Communication
Architecture” IPSN'07, Cambridge, Massachusetts, USA.
April 2007.

Shuyun Lim, Chuan Chin Pu, Hyo Taek Lim, Hoonjae Lee,
"Dragon-MAC: Securing Wireless Sensor Networks with
Authenticated Encryption," JWIS2007 Proceeding,
pp.253-264, Waseda Univ., Tokyo, Japan. August 2007.

Matt Henricksen “Tiny Dragon - an Encryption Algorithm for
Wireless Sensor Networks” The 10th IEEE International
Conference on High Performance Computing and
Communications. 2007.

Laurent Eschenauer and Virgil D. Gligor (2002): “A Key-
Management Scheme for Distributed Sensor Networks,”
Conference on Computer and Communications Security.
Proceedings of the 9th ACM conference on Computer and
communications security, Washington, DC, USA, 2002.

H. Chan, A. Perrig, D. Song, “Random Key Pre distribution
Schemes for Sensor Networks”, IEEE Synposium on
Security and Privacy, 2003

026 Asian Journal of Science and Technology Vol. 4, Issue 07, pp. 023-026, July, 2013

