

Available Online at http://www.journalajst.com

ASIAN JOURNAL OF SCIENCE AND TECHNOLOGY

Asian Journal of Science and Technology Vol. 5, Issue, 1, pp. 001-003, January, 2013

RESEARCH ARTICLE

EX-SITU BIOREMEDIATION OF CRUDE OIL POLLUTED SOIL USING ALGAL SPECIES, (Aphanocapsa elachista)

^{1,*} Ifeanyi V. O., ²Anyanwu, B. N., ²Ogbulie, J. N., ²Nwabueze, R. N., ¹Chukwuma V, ¹Ekwudu O'mezie and ¹Nwabunnia, E.

¹ Department of Microbiology, Anambra State University, Uli, Anambra State, Nigeria ² Industrial Microbiology Department, Federal University of Technology, Owerri, Imo State, Nigeria

Received 17th October, 2013; Received in Revised from; 26th November, 2013; Accepted 19th December, 2013; Published online 2nd January, 2013

ABSTRACT

An investigation into the *ex-situ* bioremediation of crude oil polluted soil using algal species was carried out. The bioremediation was initiated by spilling crude oil on both sterilized soil (SS) and unsterilized soil (UNS) and inoculating with crude oil degrading micro-algal species of *Aphanocapsa elachista*. The total heterotrophic count was carried out in both the SS and UNS by viable count. Aliphatic hydrocarbon in the remediated soil was determined by gas chromatography Hewlett-Packard HP 6890 model equipped with FID at initial temperature of 65° C and final temperature of 300° C. The heterotrophic count in the SS was initially 1.90×10^{4} cfu/ml and biweekly measurement for six weeks gave 3.51×10^{4} , 4.26×10^{4} and 3.01×10^{4} cfu/ml respectively. The UNS sample gave initial count of 1.92×10^{4} cfu/ml and the biweekly measurement for 6 weeks gave 2.69×10^{4} , 2.83×10^{4} and 2.24×10^{4} cfu/ml respectively. The gas chromatographic analysis showed a decrease in total hydrocarbon from 863.68402 mg/ml on zero day to 596.76653 mg/ml in the week six sample. Analysis of the sterilized soil showed a decrease of physicochemical parameters after bioremediation. The research concludes that *Aphanocapsa elachista* algal species had the potentials for ex-situ bioremediation of crude oil polluted soils.

Key words: algae, physical parameters, bioremediation, , Aphanocapsa elachista, heterotrophic count, chromatographic analysis, soil.

INTRODUCTION

Crude oil pollution of soil and ground water are amongst the most evident negative impact of the petroleum industry to the environment. Pollution of soil is the condition arising from man's activities that render the soil less suitable for use. The cause of crude oil pollution can be from oil well drilling, transportation, storage, refining, and marketing (Mentzer and Ebere, 1996). The need to cost effectively remediate contaminated soil has led to the development of a wide range of physical, chemical and biological cleanup techniques. Bioremediation is a good option for the remediation of polluted environment because of its versatility, eco-friendliness, public acceptance, etc. (Grant and Long, 1981: Coombs, 1986; Mentzer and Ebere, 1996). Soil is a dynamic medium, which is polluted by a multitude of living organisms most of which has the ability to degrade hydrocarbons. Crude oil polluted soil can be naturally remediated and the process is known as natural attenuation. Algae are a diverse group of eukaryotic organisms that contain chlorophyll and carry out photosynthesis. They are mainly aquatic organisms, although some are found in soil or vegetation where there is enough moisture (David et al., 2003). Some species of micro-algae have the ability to degrade hydrocarbons, example is, Onchromonas danica

that can degrade polycyclic aromatic hydrocarbons. Crude oil is a dark viscous liquid and a mixture of organic compounds. It varies in composition and color, which depends on the area from which it is obtained (Bajah and Godman, 1975). Since hydrocarbons are natural products, it should be no surprise to find hydrocarbon degrading microorganisms in many environments irrespective of whether they have been contaminated or not (Sayles,1993). This research aimed at determining the *ex-situ* bioremediation of polluted soil using *Aphanocapsa elachista* algal species.

MATERIALS AND METHODS

Collection of sample: The micro-algal water sample was collected from a river at the Shell Petroleum Development Company (SPDC) drilling site at Mahu, Ohaji Egbema, Imo state. Serial dilutions of the sample was made up to 10^{-9} . The method of Ramond *et al.* (1976) was employed in the soil sample collection from a depth of 30cm in a site measuring 2m x 1. 5m.

Sterilization of Materials and Medium

Soil extract medium (with the following composition: water 900ml, soil extract solution 100ml; KN03; 200mg, MgS04 7H20; 20mg, Agar (optional); 10g, Vitamin B12 (Cyanocobalamin); 2ml, streptomycin 0.1g and nystatin;

^{*}Corresponding author: ifehos@yahoo.com

0.1g) was appropriately prepared and aseptically dispensed into pre-sterilized Petri-dishes. Glasswares and other heat stable materials were sterilized as described by Cheesbrough, (2005) and Cruickshank *et al.* (1980). The enumeration of the alga was done by inoculating in duplicates the soil extract medium in Petri dishes using 0.1ml of a 10^{-3} and 10^{-4} dilutions of the water sample, then incubated at 27° c for seven days on a regularly surface sterilized table facing the light source for illumination. Several plating and streaking were carried out before a pure culture was obtained. Identification of the algal species was according to John *et al.* (2002) guide. The vapour phase transfer technique (Amanchukwu and Okpokwasili, 1989) was employed and then incubated at 27° c for seven days in the dark.

Physicochemical parameters

Physicochemical parameters of both sterile and unsterile loamy soil samples (100g each) were analysed before and after the bioremediation. Method of analysis employed APHA AWWA and APCF (1985) and Nwachukwu and Ugoji (1995). Soil sterilization was done in hot air oven at a temperature of 150^oC for 1hour

Experimental Design and Bioremediation

Both the SS and UNS samples were simulated with crude oil to effect pollution by adding 10ml of crude oil to 50g fractions of soil in a biodegradation bottle. The samples were thoroughly mixed. The soil-crude oil mixtures were then mixed with 100ml of soil extract broth making the soil into a paste. The controls (SS and UNS) had only crude oil but no algal species. The Bioremediation was applied by pippetting 25ml of the algal species into the soil- crude oil mixture. These samples were inoculated at room temperature and incubated in the dark for six weeks. The total heterotrophic algal count was carried out at day zero after serial dilutions using 1ml of sample taken from each of the experimental setup and plating from 10-3 and 10-4 on soil extract medium in duplicates, and then incubated at room temperature on a surface sterilized table facing a light source for seven days. The colonies were counted and this procedure was repeated at biweekly interval for six weeks. Gas chromatographic analysis of the total petroleum hydrocarbon (TPH) in the SS sample was determined as described by Chikere and Okpokwasili (2003) at day zero and after six weeks using a GC (Hewlett-Packard HP 6890 model equipped with FID at initial temperature of 65° C and final temperature of 300° C).

RESULTS

Figure 1 is the total algal heterotrophic count in the UNS and SS soil samples polluted with crude oil. The initial algal population was 1.92×10^4 cfu/ml in both soil samples. At week 4, algal population in the UNS polluted soil increased to 2. 83 x 10^4 cfu/ml and 4.26×10^4 cfu/ml in the SS. At week 6, there was a decrease of algal population in both soil samples. The decrease in the number of algal colonies after week four in both the UNS and SS show that the nutrient content of the sample had decreased. Table 1 shows a decrease in the nutrient and this suggests that the alga made use of available nutrients in the soil during the period of bioremediation. Tables 2 and 3 are the day zero and week six report of the gas chromatograms (GC) of the TPH in the SS samples. The aliphatic

hydrocarbon range of nC8-nC36 characteristic of Nigerian crude oil was observed. The results showed a decrease of TPH after six weeks of bioremediation. At week 6, the total aliphatic hydrocarbon dropped from 863.68mg/L to 596.77mg/L. There is a correlation between Figure 1 and Table 3 suggesting that the increase in algal population was as a result of the algal utilization of the crude oil.

Figure 1. Total algal heterotrophic count in the unsterilized and sterilized soil samples polluted with crude oil

Table 1 The result of soil analysis before and after simulated pollution

Parameters	Pre-pollution	Post-pollution
pH(H20)	6.84	6.94
pH(KCI)	5.65	5.70
% Organic matter	2.03	0.92
% Organic Carbon	1.17	0.50
Phosphorus (mg/kg)	26.40	19.60
% Nitrogen	0.112	0.013
Exchange acidity (mol/kg)	0.40	0.96
Calcium (mol/kg)	3.20	1.60
Magnesium (mol/kg)	1.60	1.80
Potassium	0.225	0.09
Sodium (mol/kg)	0-061	0.052
%Base saturation	92.71	7.259
NO3 Nitrogen	0.028	0.09
%NO3 Nitrogen	0.014	Trace
% Sand	82.40	82.40
% Silt	6.80	5.80
% Clay	10.80	7.80
Texture	Loamy sand	Loamy sand

 Table 2. Determination of Total Petroleum Hydrocarbon at Day

 Zero

	*==========						
	E	xternal Sta	ndard Report				
Sorted By Calib. Data Mo Multiplier Dilution	dified :	Signa Tuesd 1.000 1.000	1 ay, December O(0 0	5, 2005 11:37:39 AM			
Signal 1: FLDE A,							
Rellime Type [min]	۸rea [µ۸*s]	∧mt/∧rea	Amount Grp [mg/1]	Name			
1.010	-			-			
4.765	-	-	-	c7			
8.675 VV T	28.97681	5.34567	110.24136	C8			
9.895	-	-	-	C9			
11.957		-	-	c10			
12.734 BV	11.73456	13.25347	129.34250	c11			
14.645 VV	9.975641	12.24153	143.87321	c12			
15.243 vv	27.14257	6.15249	126.23837	c14			
16.634 VV	1.65741	21.26921	101.55112	C16			
18.142 VV	5.26457	11.29165	49.67561	C18			
19.284 VV	7.25349	2.84657	5.03576	C20			
22.342 vv	48.37586	2.99253	7.12478	C24			
24.142 VV	50.26475	2.14253	21.35433	C28			
25.263 VV	18.26354	1.29578	79.12485	C32			
30.274 PB	6.85746	17.45765	90.12213	C36			
39.290	-	-	-	C10			
Totals :			863.68402				

Table 3. Determination of Total Petroleum Hydrocarbon after Six Weeks

Ret time 'Type	Area	Amt/Area	Amount	Grp Name
[min]	[pAs]			[mg /l]
4.010	-	-	-	C6
4.765	-	-	-	C 7
5.650 VV T	25.63564	3.32285	85.18341	C8
6.720	-	-	-	C9
7.68 5	-	-	-	C10
8.781 BV	9.75873	10.16853	99.23190	C11
9.591 VV	8.83972	12.65475	111.86441	C12
11.355 VV	24.16555	4.06485	98.22944	C14
13.62.1 VV	2.90157	19.91028	57.77113	C16
1.5.1.85 VV	3.13373	822870	25.78657	C18
16.529 VV	690039	0.00000	0.00000	C20
19.037 VV	44.29306	0.00000	0.00000	C24
20.876 VV	45.50386	1.37559	6.25944	C28
23.350 VV	15.49377	3.22965	50.03945	C32
27.632 PB.	4.789377	13.02788	62.40079	C36
34.453	4.78979	-	-	C40
Totals			596.76653	

DISCUSSION

The increase in the number of algal colonies suggests successful adaptation and the utilisation of the crude oil by Aphanocapsa elachista for carbon and energy sources. This agrees with Ogbulie and Ifeanyi (2006) who established that Microcystis flo-aquae and Chaetophora tuberculosa micro-algae grew on mineral salt medium using crude oil as the only source of carbon and energy. This agrees with Al-Hassan et al. (1992) who observed that extensive mats of blue green algae appeared on the soil layers when crude oil polluted environments were left alone. The subsequent decrease as a result of reduction in soil nutrients was in line with Pfaender and Bartholomeur (1982) who reported that a reduction in substrate in environment leads to slower growth. The decrease is also supported by the report of Sayles et al. (1993) who reported about reduction of microorganisms in an environment as a result of competition. The reduction of TPH corroborates with the report of Walker et al. (1975) who made the first report of the degradation of oil by an algal species Prototheca zopfii. The reduction in the hydrocarbon also agrees with Semple and Cain (1996). Similarly, Ifeanyi and Ogbulie (2008) reported a reduction of TPH in a hydrocarbon challenge test carried out using Microcystis flo-aquae. Algae were previously not considered capable of degrading petroleum hydrocarbon. This research in corroboration with earlier researches concludes that Aphanocapsa elachista algal species had the potentials for ex-situ bioremediation of crude oil polluted soils.

REFERENCES

AI-Hasan, K.: El-Nawawy, A.; ElBagouri, I.; Abdul, M and Kalafewi. M (1992). Biodegradation of oily sludge in Kuwait soil. World Journal of microbiology and Biotechnology. pp 818-100

- Amanchukwu, S.O. and Okpokwasili, G.C. (1989). Hydrocarbon degradation and utilization of a palm-wine yeast isolate. *Microbiology Letters*. 54: 151-154.
- APHA, AWWA and APCF (1985). Standard methods for water and waste water examination 15th edition, Washington D. C.
- Bejah, S. T. and Godman, A. (1975). Certificate chemistry. Longman group limited, London. pp 216-.218
- Coombs, J. (1986). Macmillan Dictionary of Biotechnology. The Macmillan press limited, London.
- Cheesbrough, M. (2005). District Laboratory Practice in Tropical Countries. Part 1(2nd ed), Cambridge University Press, U.K pp 143-157.
- Chikere, B O. and Okpokwasili, G. C. (2003). Enhancement of biodegradation of petrochemicals by nutrient supplementation. *Nig. J. Microbiol.* 17(2):130-135.
- Cruickshank, R. J., Duguid, P., Mariman, B. P., and Swain, R.N.A.(1980). Medical Microbiology (2th ed), vol.2, Churchill Livingstone, London. pp.399-434.
- .David, M. J.: Brian, A.W.: and Alan, J.B. (2003). The fresh water algal flora of the British Isles. An identification guide to fresh water and terrestrial algae. University press, Cambridge U.K.
- Grant, W.D. and Long, P.E. (1981). Environmental Microbiology, Blackie and sons Ltd. Glasgow. pp56-59.
- Ifeanyi, V. O. and Ogbulie, J. N. (2008). Effect of nitrogen on the mineralization of crude oil by Microcystis flo-aquae. *World J. Biotechnol.* 9(1)1486-1490.
- Mentzer, E. and Ebere, D (1996). Remediation of hydrocarbon contaminated sites. Environmental affairs department, SPDC Nig. Port Harcourt. Pp1-6
- Nwachukwu, S. C. U. and Ugoji, F. O. (1995). Impact of crude petroleum spills on microbial communities of tropical soils. *Int. J. Ecol. Environ. Sci.* 21: 169-176.
- Ogbulie, J.N. and Ifeanyi, V.O. (2006). Microcystis flo-aquae and Chaetophora tuberculosa algae endowed to degrade hydrocarbon. *J Sc Engr. & Tech.* 13(3):7095-7096.
- Pfaender, F.K. and Bartholomew, G.W. (1982). Measurement of biodegradation rates by determining heterotrophic uptake of radiolabelled pollutants. *Applied and Environmental Microbiology*. 44, 159-164
- Raymond, R. I., Hudson, J. O., Jamison, V. W. (1976). Oil degradation in soil. *Appl. Environ. Microbiol.* 31: 522-535.
- Sayles G. (1993). In-situ and ex-situ bioremediation. Second international symposium, San Diego
- Semple, K.T. and Cain, R.B. (1996). Biodegradation of phenol by the Alga Ochromonas danica, *Appl. Environ. Microbiol.* 62(4): 1265-1273.
- Walter, J.D; Colwell, R.R and Vaituzis, Z. (1975). Biodegradation rates of components of petroleum. *Canadian Journal of microbiology* 2(4): 423-424
