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ARTICLE INFO    ABSTRACT 
 

 

The electrical characterization of solar cells is essential to evaluate their performance and understand their 
behavior under different environmental conditions, including temperature. Charge carriers, under the 
influence of temperature, diffuse into the cell, a phenomenon quantified by the diffusion capacitance. These 
generated carriers do not contribute to the electric current; some recombine in specific areas, either on the 
surface or in the bulk. Bulk recombination mechanisms include Shockley-Read-Hall (SRH) recombination, 
radiative recombination, and Auger recombination. We analyzed the variation of diffusion capacitance as a 
function of temperature, neglecting surface recombinations to focus on bulk recombination mechanisms. 
Calculations, performed for three different bias voltages, show that diffusion capacitance due to Auger 
recombination predominates, followed by that associated with radiative recombination, while SRH 
recombination contributes the least. The study reveals that, although the open-circuit voltage decreases with 
increasing temperature, the diffusion capacitance increases, mainly due to carrier thermogeneration and the 
exponential variation of the diode current. These results demonstrate a lack of direct causal relationship 
between the decrease in open-circuit voltage and the increase in diffusion capacitance. 
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INTRODUCTION 
 
Photovoltaic solar cells are affected by environmental parameters 
such as temperature, sunlight, humidity, dust or wind speed. These 
parameters have an influence on the electrical quantities and other 
electrical parameters of the cell. It is therefore necessary to take into 
account the dependence of the electrical parameters on these 
environmental parameters. However, in the scientific literature, 
studies most often focus on the variation of temperature. The charge 
carriers in a photovoltaic solar cell tend to diffuse in the cell under 
the influence of an electric field or a concentration gradient [1]. The 
diffusion capacity is the measure of the capacity of the carriers to 
diffuse. This article makes the theoretical study of the diffusion 
capacity of a silicon solar cell. In a solar cell, during the carrier 
generation process, not all of them contribute to the electric current. 
Some of these carriers recombine. The main recombination zones are 
in volume or on the surface. For the volume recombination 
mechanisms, we distinguish three main recombination mechanisms 
which are: SRH, radiative and Auger recombination mechanisms. 
The diffusion capacity of a solar cell is in a certain way linked to the 
different recombination mechanisms.  
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METHODS  
 
Simpliflying Assumptions 
 
To study the diffusion capacity, we consider the following 
hypotheses: 

 
 The solar cell used is based on crystalline silicon: therefore all the 

parameters that will be used will be specific to silicon. However, 
we do not focus on the level and degree of doping of silicon 
because in practice solar cells can be weakly or strongly doped. 

 The semiconductor is non-degenerate at thermodynamic 
equilibrium. The number of electrons and holes is given by the 
product of the density of states by the distribution function and 
that the Fermi level is located in the forbidden band so that the 
Boltzmann approximation is valid and the carrier densities can be 
written as follows: 

 

𝑛 = 𝑁𝑒𝑥𝑝 − ቂ
(ாିாಷ)

்
ቃ                                                                 (1) 

 

𝑝 = 𝑁𝑒𝑥𝑝 − ቂ
(ாೇିாಷ)

்
ቃ                                                                (2) 

 
Where n and p are the numbers of electrons and holes respectively, 
𝑁 and 𝑁 are called the equivalent densities of states in the 
conduction band and the valence band respectively, 𝐸 and 𝐸 are the 
energies of the bottom of the conduction band and the valence band 
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respectively, k is the Boltzmann constant, T is the temperature and 𝐸ி 
is the Fermi level, which is the energy level where the probability of a 
state being occupied by an electron is 50% at zero absolute 
temperature. 
 

 The electric field is constant in the absorbing layer, so the 
energy band diagram does not depend on it. This allows us to 
rewrite equations (1) and (2) as follows: 
 

𝑛(𝑥) = 𝑛𝑒𝑥𝑝 ቀ−
ா௫

்
ቁ                                                                    (3) 

 

𝑝(𝑥) = 𝑝𝑒𝑥𝑝 ቀ−
ா(ି௫)

்
ቁ                                                             (4) 

 
Where 𝑛 and 𝑝 are the electron and hole densities at the photoanode 
and cathode, respectively, E is the electric field, and L is the thickness 
of the cell base. 
 
These assumptions are intended to simplify the analysis by neglecting 
certain effects such as carrier transport currents. This allows us to 
focus on volume-limited recombination mechanisms. 
 
Mathematical Model of Diffusion Capacity: The diffusion capacity 
depends on the total quantity of excess minority charges in the base of 
the solar cell; the derivative of this allows us to have the expression of 
the capacity as a function of the voltage: 
 

𝐶ௗ(𝑉) =
ௗொ್

ௗ
                                                                                    (5) 

 
The total quantity of minority charges 𝑄 is given by: 
 
𝑄 = 𝐼𝜏[𝑒𝑥𝑝(𝐾𝑉/𝑇) − 1]                                                         (6) 
 
By deriving equation (4) with respect to voltage V, we obtain: 
 

𝐶ௗ(𝑉) = (


்
)𝐼𝜏exp (



்
)                                                                (7) 

 
It is clear from equation (7) that the diffusion capacity depends on the 
voltage applied to the terminals of the solar cell. It thus becomes 
interesting to express it in the case where the voltage is equal to the 
open-circuit voltage. To have this expression in open circuit, the 
following condition is required: KV/T≫1. We thus obtain: 
 

𝐶ௗ(𝑉) = 𝐾𝜏
ூ

்
                                                                              (8) 

 
In this equation, 𝐼 is the short-circuit current. 
 
The diode current (𝐼ௗ), at the junction, is given by equation (9): 
 

𝐼ௗ = 𝐼𝑒𝑥𝑝 ቀ


்
− 1ቁ                                                                        (9) 

 
The saturation current of the diode is given by equation (10): 
 

𝐼 = 𝐼 ቂ𝑒𝑥𝑝 ቀ


்
− 1ቁቃ

ିଵ
                                                           (10) 

 
For KV/T≫1, 𝐶ௗ can be expressed as a function of 𝐼ௗ. We obtain: 
 

𝐶ௗ = 𝐾𝜏
ூ

்
                                                                                      (11) 

 
For solar cells whose relationship between base thickness (x) and 
diffusion length satisfies the condition 

୶


≪ 1, equations (6) and (11) 

must be multiplied by 
୶


 . 

 
The diffusion capacitance, mainly related to the diffusion process and 
expressed in Farad (F) is associated with the diffusion charge stored 
in the quasi-neutral region of the junction when forward biased. It 
plays a very important role and influences the dynamics of the cell 

under forward bias. Parameters such as the lifetime of minority 
carriers in the base and their diffusion length, influence the diffusion 
capacitance because these parameters determine how many carriers 
can be injected and stored in the quasi-neutral region under forward 
bias. 
 
Mathematical model of open Circuit Voltage: The determination of 
the open circuit voltage implies a total absence of carrier flux. This 
implies a balance between the generation rate and the recombination 
rate of the photogenerated carriers, so that: 
 
𝑅(𝑛, 𝑝) = 𝐺                                                                                     (12) 
 
From equations (3) and (4), the product np is independent of x as 
shown in equation (13). 
 

𝑛𝑝 = 𝑛𝑝𝑒𝑥𝑝 ቀ−
ா

்
ቁ                                                                   (13) 

 
The open-circuit voltage depends on the product np. It is given by the 
following equation (14): 
 

𝑉 =
ா


−

்


𝑙𝑛 ቀ

ேேೇ


ቁ                                                                  (14) 

 
Where 𝐸 represents the band gap energy. 
 
We have established the hypothesis that, in open circuit operation, the 
recombination rate and the generation rate are related by the 
illumination level by the product np. The determination of this 
product requires having expressions for the recombination rate. For 
this, we consider the following three types of recombination: bulk 
trap-assisted Shockley-Read-Hall (SRH) recombination, radiative 
recombination, and Auger recombination, using models that can be 
found in [2]. These models are given by equations (15), (16) and (17): 
 
𝑅ௌோு = 2𝐴



ା
                                                                                (15) 

 
𝑅ௗ = 𝐵𝑛𝑝                                                                                    (16) 
 

𝑅௨ =


ଶ
𝑛𝑝(𝑛 + 𝑝)                                                                    (17) 

 
Equations (15), (16) and (17) give respectively the Shockley-Read-
Hall (SRH), radiative and Auger recombination rates and A, B and C 
are the respective recombination constants. These recombination 
constants are given by the ABC model [3]. To obtain the expressions 
of the open-circuit voltage as a function of the three different types of 
bulk recombinations, the following hypothesis is required: the 
intrinsic absorbing layer is considered to be homogeneous with a 
constant illumination G and n = p. Under these conditions and on the 
basis of the Boltzmann approximation giving equations (1) and (2), 
the open-circuit voltage can be expressed as follows: 
 

𝑉(ௌோு) =
ா


−

்


[𝑙𝑛(𝐴ଶ𝑁𝑁) − 2ln (𝐺)]                                 (18)   

          

𝑉(ௗ) =
ா


−

்


[𝑙𝑛(𝐵𝑁𝑁) − ln (𝐺)]                                     (19) 

 

𝑉(௨) =
ா


−

்


ቂ𝑙𝑛൫𝐶ଶ/ଷ𝑁𝑁൯ −

ଶ

ଷ
ln (𝐺)ቃ                          (20) 

 

The coefficients 2, 1 and 2/3 represent the slope S for the respective 
cases of SRH, radiative and Auger recombination. This slope is given 
by: 
 

𝑆 =
డ[()]

డ[(ீ)]
                                                                                    (21) 

 

The expression for the slope S given by equation (21) only concerns 
the case where we assume that n=p. 
 

Mathematical Model of Short-Circuit Current: The short-circuit 
current density does not depend on the different recombination cases. 
This is demonstrated by the assumptions that have been established. 
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However, in short-circuit conditions, the different recombination 
mechanisms are neglected compared to open-circuit operation. Under 
these conditions and taking into account the small variation of the 
short-circuit current compared to the temperature variation, the short-
circuit current density can be expressed as follows [4]: 
 

𝐼௦ = 𝑞𝐺𝐿 ቂ1 + 𝛼𝐼௦
(்ି ೝ்)

ଵ
ቃ                                                             (22) 

 
Where 𝛼𝐼௦  represents the temperature coefficient in short-circuit 
operation and 𝑇 is the reference temperature. 
 
Mathematical model of the Band Gap Energy: Currently, the 
models presented in the literature and dealing with the band gap are 
made on the basis of the works of Bludau and Macfarlane. However, 
three models are most often used. His models are the works of 
Thurmond, Alex and Pässler [5][6][7][8].The models of Thurmond 
and Alex follow the following equation: 
 

𝐸
(𝑇) = 𝐸

(0) −
∝்మ

்ାఉ
                                                                     (23) 

 
Where 𝛼 is expressed in 𝑒𝑉. 𝐾ିଵ and β in K. 
 
The two assumptions of equation (23) are that the energy gap must be 
inversely proportional to T at high temperature and proportional to 𝑇ଶ 
at low temperature. The use of this equation is justified by the fact 
that it adequately represents the experimental results of M. B. Panish 
et al [9]. 
 
The Pässler model follows the following equation: 
 

𝐸
(𝑇) = 𝐸

(0)−∝ 𝜃 ቈ𝛾 +
ଷ∆మ

ଶ
ቀ1 +

గమ

ଷ(ଵା∆మ)
𝜒ଶ +

ଷ∆మିଵ

ସ
𝜒ଷ +

଼

ଷ
𝜒ସ +

𝜒 − 1ቁ

భ

ల൨                                                                                         (24) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Where α represents the limit at the slope level when T tends to 
infinity, θ is the average temperature of the phonons, Δ is the degree 
of dispersion of the phonons, specific to the material, γ depends on Δ, 
θ and T. Its expression is given by the following equation: 
 

𝛾 =
ଵିଷ௱మ

௫ቀ
೭


ቁିଵ

                                                                                    (25) 

 
The following table (Tab 1) gives the values of the different 
coefficients for different materials and table (Tab 2) gives the 
parameter values for the models of equations (23) and (24). 
 
The following table (Tab 2) gives the parameter values for the models 
of equations (23) and (24). 
 

Although the gap between the parameters of the three models is 
small, there is a difference between these three models. In Fig. 1, the 
deviation does not exceed unity and is of the order of 0.7 at low 
temperature and 0.8 at high temperature. These observations can be 
misleading because the intrinsic charge carrier density depends on the 
band gap but, it may well not follow the same trends given by the 
models of this band. Let us analyze more closely the implication of 
the band gap models on the model of the intrinsic charge carrier 
density. The unrealism of the extremely wide dispersion regime 
implied by the Varshni model and which has never been observed 
experimentally is the proof of the greater accuracy of the Pässler 
model. For high temperatures, we observe a tendency of 𝐸

(T) 
towards the asymptote 𝐸(0) − 𝛼𝑇, where α is the slope of this 
asymptote and 𝐸(0) is the intersection of this asymptote with the 
y-axis at 0K. According to the Pässler model, the renormalization 
energy is defined as 𝐸(0) − 𝐸

(0) and is equal to αΘ/2 in the 
Varshni model [10]. This means that the parameter α and the 
renormalization energy are overestimated in the Thurmond and Alex 
models. In the further development of the different models, taking 
into account the band gap, the Passler model will be used. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Tab 1. Dispersion-related parameters from numerical fits of experimental band gap Eg(T), data available for various materials of the 
groups 

 
Divice  Tmin-Tmax (K) 𝛼/10ିସ (eV/K) 𝛩 (K) 𝛥 𝛼𝛩/2 (MeV) 
Si 2 - 415 3,23 446  0,51  72 

 
Tab 2. Parameters for the 𝑬𝒈

𝟎  band gap models of Thurmond, Alex and Pässler 
 

Parameters 𝐸
(0) (eV) 𝛼 (eV/K) 𝛽 (K) 𝛩 (K) 𝛥 𝛾 𝜒 

Thurmond 1,17 4,73. 10ିସ 636 - - - - 
Alex 1,1692 4,9. 10ିସ 655 - - - - 
Pässler 1,17 3,23. 10ିସ - 446 0,51 1 − 3𝛥ଶ

𝑒𝑥𝑝 ቀ
௵

்
ቁ − 1

 
2𝑇

𝛩
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Fig. 1.  Band gap model as a function of temperature 
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Mathematical Model of Carrier Lifetime: The minority carrier 
lifetime model mainly characterizes carrier recombinations. Taking 
into account the three recombination mechanisms considered: 
Shockley-Read-Hall (SRH), radiative and Auger. The lifetime is a 
measure of the average time during which a charge carrier (electron 
or hole) remains mobile in a semiconductor material before 
recombining. It is modeled as follows: 
 
ଵ

ఛ
=

ଵ

ఛೄೃಹ
+

ଵ

ఛೝೌೌೡ
+

ଵ

ఛಲೠೝ
                                           

 

The carrier lifetime related to the SRH recombination mechanism is 
given by: 
 

𝜏ௌோு(𝑇) = 𝜏ௌோு(300) ቀ
ଷ

்
ቁ

∝
                                                      

 

In this model, the value of α varies depending on the type of defect in 
question, but allows for a qualitative analysis. In the context of this 
present study, a value of α=1.5 was taken. 
 
The carrier lifetime related to the radiative recombination mechanism 
is given by: 
 

𝜏ௗ =
ଵ

(ேା∆)
                                                                             

 

The carrier lifetime model associated with the radiative 
recombination mechanism given by equation (28), implies two 
situations: (i) for a low injection level, equivalent to 
lifetime associated with radiative recombination depe
doping level Nd, (ii) for a high injection level, this lifetime is 
inversely proportional to the concentration of excess carriers in the 
base of the cell. According to some authors, under classical 
illumination conditions, equivalent to AM 1.5G, the concentration of 
excess carriers and the doping are of the same order of magnitude. 
The experimentally measured radiative recombination coefficient B 
for c-Si which has an indirect band gap is 5. 10ିଵହ

[11]. In theory, this coefficient depends on the temperatu
authors have proposed mathematical models for the radiative 
recombination coefficient. However, among these authors, some 
found that the radiative recombination coefficient increases with 
temperature and others obtained the opposite. Among those w
obtained an increase in the radiative recombination coefficient with 
temperature, we can cite the work of Van Roosbroeck and Shockley 
[12], who obtained a slight increase in the radiative recombination 
coefficient with temperature. Among the authors who
decrease in the recombination coefficient with temperature, we can 
cite: (i) T. Trupke et al., who determined the absorption coefficient of 
intrinsic crystalline silicon over the temperature range from 77K to 
300K. They calculated the radiative absorption coefficient from the 
absorption coefficient for band-to-band transitions that they 
determined at different temperatures from the photoluminescence 
spectrum measured on silicon wafers. They observed that B(T) 
decreases as a function of temperature [13]. (ii) H. Schlangenotto et 
al., who experimentally determined the radiative recombination 
coefficient for silicon. By injecting carriers (electrons
base of the cell, they measured the intensity of the emitted radiation 
as a function of the concentration of the injected carriers at different 
temperatures. In their studies, they took into account the effect of 
excitons. They found that the radiative recombination coefficient 
decreases by a factor of about 30 between 100K and 400K [11]. In 
this present study, we will use the model proposed by H. T.
expression of the coefficient B(T) is obtained using the theory of Van 
Roosbroech and Shockley: 
 

𝐵(𝑇) =
ଵ


మ ×

ଵ

గమℏయబ
మ ∫ ቂ𝑛ଶ × (ℏ𝜔)ଶ × 𝛼(ℏ𝜔, 𝑇)

∞



𝑑(ℏ𝜔)ቃ                                                                                            
 

Nguyen et al., who made a polynomial approximation of the 
logarithm to base 10 of the radiative recombination coefficient [15].
From equation (29), we derive the product 𝐵(
equation (30): 
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                                        (27) 
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                              (28) 

The carrier lifetime model associated with the radiative 
equation (28), implies two 

situations: (i) for a low injection level, equivalent to (∆𝑝 < 𝑁ௗ), the 
lifetime associated with radiative recombination depends only on the 

, (ii) for a high injection level, this lifetime is 
inversely proportional to the concentration of excess carriers in the 
base of the cell. According to some authors, under classical 
illumination conditions, equivalent to AM 1.5G, the concentration of 

ss carriers and the doping are of the same order of magnitude. 
The experimentally measured radiative recombination coefficient B 

ଵହ𝑐𝑚ିଷ. 𝑠ିଵat 300K 
[11]. In theory, this coefficient depends on the temperature. Some 
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temperature, we can cite the work of Van Roosbroeck and Shockley 
[12], who obtained a slight increase in the radiative recombination 
coefficient with temperature. Among the authors who found a 
decrease in the recombination coefficient with temperature, we can 
cite: (i) T. Trupke et al., who determined the absorption coefficient of 
intrinsic crystalline silicon over the temperature range from 77K to 
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, who experimentally determined the radiative recombination 
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the concentration of the injected carriers at different 
temperatures. In their studies, they took into account the effect of 
excitons. They found that the radiative recombination coefficient 
decreases by a factor of about 30 between 100K and 400K [11]. In 
this present study, we will use the model proposed by H. T. The 
expression of the coefficient B(T) is obtained using the theory of Van 

) × 𝑒𝑥𝑝 ቀ
ିℏఠ

்
ቁ ×

                                                                (29) 

Nguyen et al., who made a polynomial approximation of the 
logarithm to base 10 of the radiative recombination coefficient [15]. 

(𝑇) × 𝑛
ଶ, given by 

𝐵(𝑇) × 𝑛
ଶ =  

ଵ

గమℏయబ
మ ∫ ቂ𝑛ଶ × (ℏ𝜔

∞



𝑑(ℏ𝜔)ቃ                                                                                            

 
To solve the integration of equation (30) the authors Nguyen et al.,
carried out measurements of the interband absorption coefficient for 
the following temperatures: 170 K, 195 K, 249 K, 291 K, 310 K and 
363 K [16]. With the data on the interband coefficient, they expressed 
the product B(T) × n_i^2 as a function of the tem
the corresponding graph (Fig 2). However, let us recall that the 
intrinsic concentration of the ni carriers also depends on the 
temperature. Therefore, we replace the expression 
𝐵(𝑇) × 𝑛

ଶ(𝑇) in order to take into account the dependence of 
on the temperature. It thus becomes necessary to choose a 
mathematical model for the intrinsic concentration of the ni carriers. 
In another publication that we had to do, we discussed the different
models existing in the literature. We chose to use the Sproul model 
for the intrinsic charge carrier concentration as recommended in [17]. 
Details of the Sproul model can be found in [18].
 

Fig. 2. B(T) versus Temperature and the 5

The 5th order polynomial approximation allowed us to obtain the 
following expression: 
 
𝐵(𝑇) = −4,14475658 × 10ିଶହ𝑇ହ

 2.65011535 × 10ିଵଽ𝑇ଷ +  6.44719006
 7.66261708 × 10ିଵହ𝑇 + 3.65040697
 
In the following, we consider a high level of doping. In this case, the 
dependence of the concentration of excess carriers in the base varies 
slightly as a function of temperature. To simplify the study, we then 
consider that this concentration does not vary as a function of 
temperature. The carrier lifetime linked to the Auger recombination 
mechanism depends on the injection level. For a low injection level, 
this lifetime is independent of the injection level 
 

𝜏௨ =
ଵ

ே
మ                                                                                 

 
For a high injection level, this lifetime becomes:
 

𝜏௨ =
ଵ

ೌ∆మ
                                                                         

 
In equations (32) and (33), the coefficients 
ambipolar and electron-related Auger recombination coefficients, 
respectively. For a semiconductor material with a decreasing band 
gap, the Auger recombination coefficient inc
On the one hand, for silicon, the temperature dependence of the 
radiative recombination coefficient is given by equation (34):
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( 𝜔)ଶ ×∝ (ℏ𝜔, 𝑇) × 𝑒𝑥𝑝 ቀ
ିℏఠ

்
ቁ ×

                                                       (30) 
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dependence of the concentration of excess carriers in the base varies 
slightly as a function of temperature. To simplify the study, we then 

this concentration does not vary as a function of 
temperature. The carrier lifetime linked to the Auger recombination 
mechanism depends on the injection level. For a low injection level, 
this lifetime is independent of the injection level ∆p: 

                                                                              (32) 

For a high injection level, this lifetime becomes: 

                                                                    (33) 

In equations (32) and (33), the coefficients 𝐶 and 𝐶 are the 
related Auger recombination coefficients, 

respectively. For a semiconductor material with a decreasing band 
gap, the Auger recombination coefficient increases with temperature. 
On the one hand, for silicon, the temperature dependence of the 
radiative recombination coefficient is given by equation (34): 
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𝐶(𝑇) = 𝐶,ଷ × ቀ
்

ଷ
ቁ

ఈ
                                                              (34) 

 
On the other hand, the ambipolar Auger recombination coefficient 
depends on the Auger recombination coefficient linked to electrons 
𝐶and that linked to holes 𝐶. 
 
𝐶(𝑇) = 𝐶(𝑇) + 𝐶(𝑇)                                                                (35) 
 
For silicon, at 300K the coefficients 𝐶and 𝐶 are respectively equal 
to 1 × 10ିଷଵ𝑐𝑚/𝑠 et 2,28 × 10ିଷଵ𝑐𝑚/𝑠. 
 
From the point of view of the variation of the Auger lifetime with 
respect to the injection level, it is low in the low injection regime and 
decreases sharply in the high injection regime [19][20]. 
 

RESULTS  
 
The variation of the diffusion capacity as a function of temperature 
has been represented in Fig. 4, 5 and 6. In the analysis of these 
graphs, we will take into account the parameters on which the 
diffusion capacity depends, such as the lifetime of the charge carriers 
and the diode current. Let us recall that the diode current (𝐼ௗ) is 
directly linked to the short-circuit current and the open-circuit voltage 
via the reverse saturation current (𝐼). The recombination mechanisms 
affect in particular the open-circuit voltage. For all three 
recombination mechanisms, the open-circuit voltage varies in the 
same way as shown in Fig. 3, but we still note that the open-circuit 
voltage for the SRH recombination mechanism is lower than that for 
the other two recombination mechanisms which are very close in 
terms of values with a small predominance of the open-circuit voltage 
for the radiative recombination mechanism [21]. 
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Fig. 3. Open circuit voltage versus temperature 
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Fig. 4. Dynamic capacitance versus temperature for Vd = 0.3 Volt 
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Fig. 5. Dynamic capacitance versus temperature for Vd = 0.5 Volt 
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Fig. 6. Dynamic capacitance versus temperature for Vd = 0.7 Volt 
 

DISCUSSION  
 
The diffusion capacity follows the same trend for all applied voltage 
values. For all voltages, the diffusion capacity increases as the 
temperature increases. In Figs 4, 5 and 6, we notice that the diffusion 
capacity due to the Auger recombination mechanism takes over the 
other two recombination mechanisms. This is followed by the 
diffusion capacity due to the radiative recombination mechanism. The 
lowest capacity is that due to the SRH recombination mechanism. 
These results are in agreement with the open circuit voltages in Fig 3. 
Note however that these results are valid in the absence of an electric 
field [21]. However, to be able to interpret these results, we will first 
base ourselves on the internal physical quantities and then consider 
the diode current of the cell because the diffusion capacity is 
proportional to the lifetime of the charge carriers and the diode 
current of the cell. Compared to the carrier lifetime, the increase in 
diffusion capacity with increasing temperature cannot be attributed to 
the carrier lifetime because their mathematical models are not related 
to an exponential variation. Compared to the diode current, the 
increase in diffusion capacity with increasing temperature can be 
attributed to it. To make the analysis, let us consider the diode current 
in open circuit and at the maximum power point, equation (9) changes 
if we replace the reverse saturation current by its expression given by:  
 
𝐼ௗ ≃ 𝐼{𝑒𝑥𝑝[𝐾(𝑉ௗ − 𝑉)/𝑇]}                                                     (36) 
 
Equation (36) shows that for open-circuit operation, the diode 
current is approximately equal to the short-circuit current because 
the exponential function becomes equal to unity. This implies that 
the diode behaves like a short circuit [22]. The diode current 
depends exponentially on the temperature. According to some 
authors, when the applied voltage is equal to Vmp, the diode enters 
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an operating mode corresponding to the (knee region), which does 
not make it completely conductive [22]. This thus leads to an 
increase in the forward current of the diode. Since the diffusion 
capacitance is proportional to the diode current and inversely 
proportional to T, its increase is therefore due to the increase in the 
diode current when the temperature increases. 
 

CONCLUSION  
 
In this paper, we have expressed the transition capacitance as a 
function of the charge carrier lifetime, the cell diode current and the 
temperature. Considering the three bulk recombination mechanisms 
namely SRH, radiative and Auger recombination, we have made a 
representation of the cell capacitance for each of these recombination 
mechanisms as a function of temperature. These latter influence the 
open circuit voltage of the cell and this open circuit voltage is related 
to the cell diode current. We found that the diffusion capacitance 
related to the Auger recombination mechanism predominates, 
followed by that related to the radiative recombination mechanism 
and the lowest capacitance is that related to the SRH recombination 
mechanism 
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