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ARTICLE INFO    ABSTRACT 
 

 

The rapid industrialization and urbanization of the Uruan Local Government Area of Akwa Ibom State, 
Nigeria, have significantly contributed to heavy metal contamination in the Nwaniba River. This 
research assesses the ecological risks associated with contamination using advanced machine learning 
techniques. Water, sediment, and marine organism samples were analyzed using ICP-OES to quantify 
seven heavy metals: iron (Fe), copper (Cu), nickel (Ni), lead (Pb), zinc (Zn), chromium (Cr), and 
manganese (Mn). Three machine learning models—Random Forest (RF), Support Vector Machines 
(SVM), and Artificial Neural Networks (ANN)—were employed to predict heavy metal concentrations 
and evaluate ecological risks. Random Forest exhibited the highest predictive accuracy (R² = 0.88), 
followed by ANN (R² = 0.83) and SVM (R² = 0.52). Results indicated significant contamination levels 
in sediments and bioaccumulation in marine organisms, particularly for Cu, Zn, and Mn, posing risks to 
aquatic life and public health. Although water quality parameters such as dissolved oxygen and pH 
generally met WHO, EPA, and NSDWQ standards, the high levels of heavy metals in sediments and 
organisms underscore the need for continuous monitoring and remediation. The study highlights the 
critical role of machine learning in enhancing ecological risk assessment and informs strategies for the 
sustainable management of aquatic ecosystems. 
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INTRODUCTION 
 
Water is an essential resource for all living organisms. Approximately 
97% of the earth's total water supply is made up of seas and oceans, 
with freshwater resources making up just 3%. On the poles, glaciers 
and ice caps contain about 68.7% of the freshwater, whereas 
groundwater contains 30.1%, surface water bodies contain 0.3%, and 
other forms contain 0.9% (Javed & Usmani, 2019). Water scarcity 
can significantly impact the distribution patterns of various 
organisms, including humans, and it has a lasting effect on the 
ecosystem. Insufficient water supply, its progressive depletion, and 
widespread contamination are major sources of ecosystem 
degradation. The growing issue of river water pollution has brought 
increased attention to water quality concerns in recent times (Hama 
Aziz et al., 2023; Javed & Usmani, 2019; Obadimu et al., 2024a & 
2024b; Shaibu et al., 2024). For instance, the introduction of heavy 
metals into water bodies, such as lakes and rivers, has led to pollution, 
which is evident in the case of the Nwaniba River in Uruan Local 
Government Area of Akwa Ibom State. The detrimental effects of 
water pollution underscore the urgent need for effective water 
management and conservation strategies to maintain healthy 
ecosystems and secure water resources for future generations. The 
ever-increasing industrialization and urbanization have led to a 
significant surge in heavy metal contamination in aquatic ecosystems, 

 
posing severe threats to environmental health and biodiversity 
(Hakeem et al., 2020; Mishra et al., 2019; Moses et al., 2022; Ubong 
et al., 2023). Heavy metals, such as mercury, lead, and cadmium, can 
enter rivers and oceans through various pathways, including industrial 
effluents, agricultural runoff, and atmospheric deposition (Shaibu et 
al., 2022; Sobti et al., 2019). Accurate assessment of ecological risks 
associated with heavy metal contamination is crucial for the 
development of effective management and conservation strategies 
(Väänänen et al., 2018; Zhang et al., 2017). However, traditional 
methods for ecological risk assessment have largely relied on 
laboratory experiments and field observations, which can be time-
consuming, costly, and limited in their ability to capture the complex 
interplay between different environmental components (Abiona et al., 
2019; Jin et al., 2020; Liu et al., 2018; Zamora-Ledezma et al., 2021). 
Recent advancements in machine learning (ML) can potentially 
revolutionize various fields, including environmental sciences and 
engineering. These innovative tools can help overcome existing 
limitations and enable more accurate predictions of environmental 
hazards under different pollution conditions (Yaseen, 2021). In this 
context, a novel machine learning-driven ecological risk assessment 
approach will be implemented to collect and analyze water, sediment, 
and fish samples from multiple locations along the Nwaniba River. 
Utilizing cutting-edge modeling techniques, the study aims to reveal 
the spatial and temporal distribution of heavy metal contamination 
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and its potential impact on the river's fragile ecosystem. The primary 
objective of this research is to explore the application of machine 
learning techniques for evaluating the ecological risks associated with 
heavy metal contamination in the Nwanibariver. Specifically, it will 
focus on the complex interactions between water, sediment, and 
marine organisms. By combining environmental data with advanced 
modeling methods, the study seeks to uncover underlying patterns 
and dynamics of heavy metal contamination, thereby enhancing our 
understanding of its effects on the river's ecosystem and potential 
consequences for human health. The findings of this study will 
contribute significantly to the scientific understanding of heavy metal 
contamination in the Nwaniba River and provide crucial insights for 
developing efficient remediation and management strategies. 
Furthermore, this research will lay the foundation for future research 
on applying machine learning techniques in environmental risk 
assessment, ultimately fostering a more sustainable and resilient 
future for our planet. 
 

MATERIALS AND METHODS 
 
Materials: Nitric Acid (Scharlau Spain) Purity: 99%, Whatman Filter 
paper (125mm), Ultra-pure reagent water (Merck US), MERCK 
Liquid Hydrogen Peroxide 30%, For Laboratory, Purity: 99%, 
Hydrochloric Acid (Merck US) Purity: 99% 
 
Study Area: The Nwanibariver is located in the Uruan Local 
Government Area, which covers a substantial landmass of 449 km². 
Positioned at coordinates 6°40'N latitude and 7°20'E longitude 
(Figure 2), the river is bordered by several other Local Government 
Areas. The Odukpani Local Government Area of Cross River State 
lies to the east, while the Okobo Local Government Area is situated to 
the south. On the west, the river is flanked by the NsitAtai and 
IbesikpoAsutan Local Government Areas, and the Itu Local 
Government Area lies to the north. For this study, the area was 
divided into two distinct sampling stations - UfakEffiong in the 
Southern District, designated as Station I (ST1), and AkaniObio in the 
Uruan Central District, designated as Station II (ST2) (Moses et al., 
2023). 
 

 
 

Figure 1. Map showing sample locations (insets of Uruan Local 
Government Area and Akwa Ibom State) 

 
Sampling: During the wet seasons, water samples and sediment (A, 
B, C, and D), and marine organisms (periwinkle flesh (PF), crab body 
(CB), and periwinkle shell (PS)) were taken from several points along 
the Nwaniba River to map the temporal and spatial distribution of 
heavy metal contamination. Standard procedures were followed 
during the sample collection to guarantee data consistency and 
accuracy (Moses et al., 2023). Sampling procedures adhered to 
established standards to maintain data consistency and precision 
(Moses et al., 2023). Sampling was conducted in the early hours 
before sunset, and the locations were chosen based on their 

geographical diversity and the potential impact of human activities on 
the environment.Water samples were obtained using amber glass 
cups, as outlined by (Moses et al., 2023), while sediment samples 
were taken from four distinct locations. Marine organisms were 
collected from one specific location (Location 3). The GPS 
coordinates and details of the sampling sites are provided in Table 1. 
At each location, in situ measurements of pH, Total Dissolved Solids 
(TDS), and conductivity were taken using standard water quality 
probes. Water and sediment samples were collected at a depth of 0.5 
meters from the shoreline, while marine organisms were hand-
collected from their natural habitats according to (Moses et al., 2023) 
and (Nor et al., 2022) All samples were stored in accordance with 
standard protocols and transported to the laboratory for further 
analysis. The soil sample was homogenized and 0.5g of each sample 
was weighed. Samples were transferred into beakers in addition to 
20ml of Aqua Regia. The digestion was carried out on a heating block 
in a fume hood with a temperature not exceeding 900C for about an 
hour. The beakers were allowed to cool and 2ml of Hydrogen 
peroxide was added to each beaker and heated for 10mins. After the 
digestion was completed, the digestate volume of each sample was 
measured. It was then filtered and diluted to 50ml using ultra-pure 
deionized water for ICP-OES Perkin-Elmer; model Optima™ 2000 
DV, using winLab32 software for the analysis. The acid digestion 
procedure for water samples followed report by (Nor et al., 2022) 
with little modification. A 20-mL aliquot of well-mixed sample was 
transferred to a beaker or conical flask. A 400 µL of concentrated 
HNO3 and 1 mL of concentrated HCl. Were added to the beaker and 
heated at 900C to 950C for 1 hour (avoid boiling). The beaker was 
removed and allowed to cool. The digestate was filtered to remove 
particulates and the final volume was adjusted to 20 mL with 
deionized water.Collected samples were analyzed using ICP-OES 
Perkin-Elmer; model Optima™ 2000DV, using winLab32 software to 
quantify the concentrations of various heavy metals, including 
mercury, lead, cadmium, and chromium.  
 

Table 1. Sample locations and their GPS coordinates 
 

Samples
/Sites 

Location GPS Coordinates 
(Latitude, Longitude) 

Site 1 Ikoneto, Cross River, Nigeria 5.041174, 8.1007 
Site 2 Central Uruan, Akwa Ibom, Nigeria 5.034249, 8.095301 
Site 3 Central Uruan, Akwa Ibom, Nigeria 5.021154, 8.077039 
Site 4 Central Uruan, Akwa Ibom, Nigeria 5.021154, 8.077039 

 
Machine Learning Techniques: Three machine learning 
algorithms—Random Forests, Support Vector Machines (SVM), and 
Artificial Neural Networks (ANN)—were employed to develop 
predictive models and assess the ecological risks associated with 
heavy metal contamination. The models were validated using 
statistical measures such as Root Mean Squared Error (RMSE), Mean 
Absolute Error (MAE), and R-squared (R²)  (Han et al., 2018; 
Taoufik et al., 2022). 
 
Data analysis: The test results were analyzed using both the 
descriptive and t-test methods. The variables analyzed were water 
quality parameters downstream with the recommendations in WHO, 
EPA, and NSDWQ, 2007 standards (Solihu & Bilewu, 2022). For the 
paired t-test part, rejection of the null hypothesis indicates a 
statistically significant difference while a non-rejection signifies that 
there is no statistically significant difference between these variables 
at a level of significance. The significance level was set at 0.05, 
indicating a 95% confidence interval. Analyses were computed with 
Python 3.12, Statistical Packages for the Social Sciences (IBM SPSS) 
Statistics software version 25.0, and Microsoft Excel version 2016 for 
Windows 10. 
 

RESULTS AND DISCUSSION 
 
The study employed machine learning techniques to evaluate the 
ecological risks of heavy metal contamination in the Nwaniba River. 
Random Forests, Support Vector Machines (SVM), and Artificial 
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Neural Networks (ANN) were utilized to analyze the concentrations 
of heavy metals in water, sediment, and marine organisms.  
Descriptive statistics and paired t-tests were used to validate the 
results by comparing water quality parameters with established 
standards from organizations like the WHO, EPA, and NSDWQ. Four 
sites were selected to measure water quality parameters, including 
Dissolved Oxygen (DO), pH, Total Dissolved Solids (TDS), and 
Conductivity. As shown in Figure 1, sites 4 and 3 exhibited higher 
levels of DO, indicating a more favorable environment for aquatic 
life. Site 1 had the highest pH, followed by sites 2 and 3, which could 
indicate potential alkalinity. TDS levels were most prominent at sites 
1, 2, and 4, and conductivity was significantly higher at sites 1 and 2, 
suggesting variations in the water quality among th
water samples collected from four different locations showed varying 
levels of dissolved oxygen, pH, TDS, and conductivity (Table 2).
Dissolved oxygen concentrations ranged from 6.2 mg/L to 9.2 mg/L, 
indicating potential differences in water quality across the sites. The 
pH levels varied from 6.0 to 9.2, with higher pH levels observed at 
Ikoneto (Site 1), as illustrated in Figure 1. The presence of these 
parameters and their variations across the sites can have implications 
for the aquatic ecosystem (Nahhal et al., 2021). Dissolved oxygen is
crucial for the survival of aquatic organisms, while pH levels can 
affect the solubility of heavy metals and other substances in the water. 
TDS and conductivity can impact water quality and the overall health 
of the ecosystem (Nahhal et al., 2021; Zhang et al., 2017)
observed differences in water quality parameters as shown in Table 2 
align with findings from previous studies. Maity et al., (2022)
Ogwueleka, (2015) reported that disposing of solid waste in water 
bodies contributes to water pollution, leading to variations in TDS 
and conductivity between waste disposal and non
Moreover, Awomeso et al., (2019) and Ogwueleka, (2015)
seasonal fluctuations in temperature and dissolved oxygen levels, 
further supporting the notion that water quality parameters can exhibit 
significant differences across various locations.  
 

 
Figure 2. Selected Element Concentrations (mg/L) across Four 

Locations 
 

Table 1. Physicochemical parameters of the water samples at 
different sites 

 
Sample  Dissolve Oxygen 

Concentration (mg/L) 
pH TDS 

Site 1 6.9 9.2 34 
Site 2 6.2 8.1 24 
Site 3 7.6 8 14 
Site 4 9.2 6 24 

 
The concentrations of various elements in the water samples are 
shown in Table 2, with key elements including iron (Fe), copper (Cu), 
nickel (Ni), lead (Pb), zinc (Zn), chromium (Cr), and manganese 
(Mn). Iron levels were highest at Site 1 (3.1196 mg/L), Si
(2.8819mg/L), Site 3 (2.7007mg/L) and lowest at Site 4 (0.6291 
mg/L). Copper concentrations ranged from 0.0411 mg/L at Site 3 to 
0.0678 mg/L at Site 2. Nickel was detected at Sites 1, 2, and 3, with 
the highest concentration at Site 3 (0.0379 mg/L). L
detected at Sites 2 (0.0354 mg/L) and 3 (0.0056 mg/L). Zinc 
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The concentrations of various elements in the water samples are 
shown in Table 2, with key elements including iron (Fe), copper (Cu), 
nickel (Ni), lead (Pb), zinc (Zn), chromium (Cr), and manganese 
(Mn). Iron levels were highest at Site 1 (3.1196 mg/L), Site 2 
(2.8819mg/L), Site 3 (2.7007mg/L) and lowest at Site 4 (0.6291 
mg/L). Copper concentrations ranged from 0.0411 mg/L at Site 3 to 
0.0678 mg/L at Site 2. Nickel was detected at Sites 1, 2, and 3, with 
the highest concentration at Site 3 (0.0379 mg/L). Lead was only 
detected at Sites 2 (0.0354 mg/L) and 3 (0.0056 mg/L). Zinc 

concentrations were observed at Sites 2 (0.0772 mg/L) and 3 (0.0600 
mg/L). Chromium levels were highest at Site 3 (0.0452 mg/L) and 
lowest at Site 2 (0.0047 mg/L). Manganese concentra
from 0.1124 mg/L at Site 1 to 0.1104 mg/L at Site 4. Figure 2 
presents the concentrations of selected elements across the four 
locations, indicating potential contamination sources and varying 
environmental conditions. The presence of heavy me
poses risks to aquatic life and public health, emphasizing the 
importance of monitoring these elements for effective environmental 
management. Figure 3 displays a heatmap visualization of all 
analyzed element concentrations in water sampl
corresponding to Table 3. This comprehensive overview facilitates a 
comparison of elemental levels between sites, enabling the 
identification of similarities and differences in the composition of 
each location's water sample. The he
and low concentrations, offering valuable insights into varying 
degrees of contamination and overall water quality across the sites.

Table 3. Heavy Metal Concentrations (mg/L) in Water Samples

Element Site 1 Site 2
Fe 3.1196 2.8819
Cu 0.0437 0.0678
Ni 0.0351 0.0174
Pb nd 0.0354
Zn nd 0.0772
Cr 0.0061 0.0047
Mn 0.1124 0.1023

Not detected (nd) levels of Pb and Zn in some 
spatial variability in contamination sources.

Figure 3. Heatmap of Element Concentrations in Water Samples 
from Four Sites

The variations in heavy metal concentrations align with findings from 
previous studies by Gwenzi et al., (2018)
which reported spatial variations in heavy metal concentrations due to 
factors such as industrial activities, waste disposal, and geochemical 
differences. These variations emphasize the importance of continuous 
monitoring and assessment of water qual
the health of aquatic ecosystems and protect public health.
4 presents the statistical analysis of the physicochemical parameters 
of the Nwaniba River water across four sites. The mean values for 
each parameter were calculated to represent the average across all 
sites, while the standard deviation (SD) quantifies the variation from 
the mean. The coefficient of variation (CV%) was computed to assess 
the dispersion relative to the mean, and degrees of freedom (df) were 
included to support the analysis. These values provide insights into 
the water quality and variations in physicochemical parameters across 
the sampling locations along the Nwaniba River.
 

Several machine learning models were tested, including Random 
Forest (RF), Support Vector Machine (SVM), and Artificial Neural 
Network (ANN). The flowchart diagram that illustrates the process of 
data analysis through the utilization of machine learning models is 
shown in Figure 4. These models were evaluated based on their 
performance, particularly using the coefficient of determination (R²), 
which indicates how well the model explains variability in the data.
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concentrations were observed at Sites 2 (0.0772 mg/L) and 3 (0.0600 
mg/L). Chromium levels were highest at Site 3 (0.0452 mg/L) and 
lowest at Site 2 (0.0047 mg/L). Manganese concentrations ranged 
from 0.1124 mg/L at Site 1 to 0.1104 mg/L at Site 4. Figure 2 
presents the concentrations of selected elements across the four 
locations, indicating potential contamination sources and varying 
environmental conditions. The presence of heavy metals in the water 
poses risks to aquatic life and public health, emphasizing the 
importance of monitoring these elements for effective environmental 
management. Figure 3 displays a heatmap visualization of all 
analyzed element concentrations in water samples from the four sites, 
corresponding to Table 3. This comprehensive overview facilitates a 
comparison of elemental levels between sites, enabling the 
identification of similarities and differences in the composition of 
each location's water sample. The heatmap highlights areas of high 
and low concentrations, offering valuable insights into varying 
degrees of contamination and overall water quality across the sites. 

 
Heavy Metal Concentrations (mg/L) in Water Samples 

 
Site 2 Site 3 Site 4 
2.8819 2.7007 0.6291 
0.0678 0.0411 0.0609 
0.0174 0.0379 nd 
0.0354 0.0056 nd 
0.0772 0.0600 nd 
0.0047 0.0452 nd 
0.1023 0.1391 0.1104 

 
Not detected (nd) levels of Pb and Zn in some locations suggest 
spatial variability in contamination sources. 
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from Four Sites 
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The Figure 4 illustrates the use of Random Forest machine-learning 
techniques to compare actual and predicted element concentrations. 
This visualization helps uncover patterns and correlations between 
observed and predicted values, offering a deeper understanding of 
element distribution in the study area. Random Forest demonstrated 
superior performance with an R² of 0.88, accounting for 97% of the 
variance. It achieved a Root Mean Squared Error (RMSE) of 0.14 and 
a Mean Absolute Error (MAE) of 0.13, highlighting its high 
predictive accuracy for heavy metal concentrations in sediment and 
marine organisms.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The Artificial Neural Network (ANN) performed slightly less 
effectively, with an R² of 0.83, an RMSE of 0.24, and an MAE of 
0.23, yet it still captured a substantial portion of the data variance. In 
contrast, Support Vector Machine (SVM) had the lowest 
performance, with an R² of 0.52, explaining only 66% of the variance, 
alongside an RMSE and MAE of 0.50 each, indicating relatively poor 
predictive accuracy compared to Random Forest and ANN, as 
depicted in Figure 5. Based on the R² values, Random Forest was 
identified as the best-performing model for ecological risk 

 
 

Figure 4: A flowchart to illustrate the process of data analysis through the utilization of machine learning models 
 

Table 4. Statistical analysis of Nwaniba River water physicochemical parameters 
 

Element Site 1 Site 2 Site 3 Site 4 Mean SD CV% df 
Fe 3.1196 2.8819 2.7007 0.6291 2.332825 1.148696 0.492406 3 
Cu 0.0437 0.0678 0.0411 0.0609 0.053375 0.013025 0.244037 3 
Ni 0.0351 0.0174 0.0379 nd 0.030133 0.011116 0.368891 2 
Pb nd 0.0354 0.0056 nd 0.0205 0.021072 1.027892 1 
Zn nd 0.0772 0.0600 nd 0.0686 0.012162 0.177292 1 
Cr 0.0061 0.0047 0.0452 nd 0.018667 0.022989 1.231564 2 
Mn 0.1124 0.1023 0.1391 0.1104 0.11605 0.015975 0.137657 3 

                                      SD= Standard Deviation CV= Coefficient of Variation 
 

 
Figure 5. Evaluation of Random Forest, ANN and SVMMachine Learning Models for Predicting Heavy Metal Contamination in 

Sediments and Marine Organisms 
 
 

Table 5: Heavy Metal Concentrations (mg/kg) in Sediment and Marine Organisms 
 

Element A B C D PF CB PS 
Fe 76838.1016 58937.7813 38973.0352 62049.4023 3405.8621 5268.0986 1495.6705 
Cu 51.8232 53.0319 27.7590 37.8672 433.3761 667.6241 80.5817 
Ni 49.3766 54.6104 17.5351 45.5967 6.7698 5.6627 5.4470 
Pb 62.4141 40.9736 27.1668 64.3024 49.2654 29.3082 5.5976 
Zn 275.1165 191.3747 115.9560 190.2646 1111.1128 296.3757 119.7862 
Cr 101.8957 100.5577 35.7551 55.8531 nd 2.4479 nd 
Mn 2976.9326 797.2023 532.2999 687.5214 1549.4635 559.4444 522.0806 

                                  N D = Not Detected 
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assessment, followed by ANN, and lastly, SVM. Elemental analysis 
revealed substantial contamination by heavy metals such as 
aluminum, barium, manganese, and copper in both sediment and 
marine organism samples.Additionally, elemental concentrations 
(mg/L) from the four locations (as shown in Table 4) indicate 
significant bioaccumulation of heavy metals, which poses potential 
risks to human health (Khan et al., 2018). Heav
detrimental effects on various organ systems, making their presence 
in water a significant public health concern. Furthermore, the 
statistical analysis of physicochemical parameters in the Nwaniba 
River water reveals variations in water quality across the sampling 
sites, which may be attributed to both natural factors and human 
activities in the surrounding areas (Bawuro et al., 2018; Fu & Xi, 
2020). The analysis of heavy metals (Fe, Cu, Ni, Pb, Zn, Cr, Mn) in 
sediment samples (A, B, C, D) and marine organisms (PF, CB, PS) 
reveals significant insights into contamination levels and their 
implications as shown in Table 5. Iron (Fe) concentrations were 
notably high in sediments, especially in samples A (76,838.10 mg/kg) 
and D (62,049.40 mg/kg), suggesting natural geochemical processes 
or anthropogenic sources such as industrial runoff. In marine 
organisms, Fe levels were significantly lower, with CB recording 
5,268.10 mg/kg, indicating limited bioavailability or effective 
excretion mechanisms. Copper (Cu) showed high levels in organisms, 
particularly CB (667.62 mg/kg) and PF (433.38 mg/kg), reflecting 
bioaccumulation. While Cu is essential for biological processes, 
excessive concentrations pose toxicological risks.Nickel (Ni) 
concentrations were highest in sediment sample B (54.61 mg/kg) and 
relatively low in marine organisms, with PF containing 6.77 mg/
This suggests limited bioaccumulation and potential contamination 
from industrial discharges.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
However, Lead (Pb) was prominent in sediments, with the highest 
concentration in sample D (64.30 mg/kg), while marine organisms 
like PF and CB contained 49.27 mg/kg and 29.31 mg/kg, 
respectively. Pb’s presence highlights potential biomagnification risks 
and contamination from anthropogenic activities such as vehicle 
emissions or industrial waste. Zinc (Zn) levels were highest in PF 

 

Figure 6. Paired T-Test Analysis: Observed vs. Standard Values for Dissolved Oxygen, pH, TDS, and Conductivity

 

Figure 7. Paired T-Test Analysis: Observed vs. Standard Values for Dissolved Oxygen, pH, TDS, and Conductivity
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in water a significant public health concern. Furthermore, the 
statistical analysis of physicochemical parameters in the Nwaniba 

uality across the sampling 
sites, which may be attributed to both natural factors and human 

(Bawuro et al., 2018; Fu & Xi, 
The analysis of heavy metals (Fe, Cu, Ni, Pb, Zn, Cr, Mn) in 

sediment samples (A, B, C, D) and marine organisms (PF, CB, PS) 
reveals significant insights into contamination levels and their 

s as shown in Table 5. Iron (Fe) concentrations were 
notably high in sediments, especially in samples A (76,838.10 mg/kg) 
and D (62,049.40 mg/kg), suggesting natural geochemical processes 
or anthropogenic sources such as industrial runoff. In marine 

sms, Fe levels were significantly lower, with CB recording 
5,268.10 mg/kg, indicating limited bioavailability or effective 
excretion mechanisms. Copper (Cu) showed high levels in organisms, 
particularly CB (667.62 mg/kg) and PF (433.38 mg/kg), reflecting 

ioaccumulation. While Cu is essential for biological processes, 
excessive concentrations pose toxicological risks.Nickel (Ni) 
concentrations were highest in sediment sample B (54.61 mg/kg) and 
relatively low in marine organisms, with PF containing 6.77 mg/kg. 
This suggests limited bioaccumulation and potential contamination 

However, Lead (Pb) was prominent in sediments, with the highest 
concentration in sample D (64.30 mg/kg), while marine organisms 
like PF and CB contained 49.27 mg/kg and 29.31 mg/kg, 
respectively. Pb’s presence highlights potential biomagnification risks 

d contamination from anthropogenic activities such as vehicle 
emissions or industrial waste. Zinc (Zn) levels were highest in PF 

(1,111.11 mg/kg) and relatively lower in sediments, suggesting 
significant bioaccumulation. While Zn is essential, elevated lev
disrupt metabolic functions in aquatic life.
concentrations were more pronounced in sediments, with sample A 
recording 101.90 mg/kg, but were minimal in marine organisms, with 
CB showing only 2.45 mg/kg. This indicates limited bioavai
efficient detoxification mechanisms in organisms. Manganese (Mn) 
was notably high in sediment sample A (2,976.93 mg/kg) and PF 
(1,549.46 mg/kg), suggesting its bioavailability and possible leaching 
from sources like fertilizers or mining operat
essential nutrient, its elevated levels raise concerns about potential 
toxicity. The Figure 6 presents an analysis of the test results using 
descriptive and paired t-test methods. The water quality parameters 
downstream were compared with the guidelines set by the WHO, 
EPA, and NSDWQ (2007) standards. The Paired T
Observed vs. Standard Values of Dissolved Oxygen (DO), pH, Total 
Dissolved Solids (TDS), and Conductivity is displayed in Figure 6. A 
significance level of 0.05 (95% confidence interval) was selected to 
assess whether statistically significant differences existed between the 
observed values and the established standards.
parameter, the p-values were greater than 0.05, indicating no 
statistically significant difference between the observed and standard 
values from the WHO, EPA, or NSDWQ. In the case of Dissolved 
Oxygen (DO), the t-statistic was -
(> 0.05), suggesting no significant difference between the o
and standard values (Awomeso et al., 2019; Vaage 
However, the lower DO levels observed downstream indicate 
potential pollution, likely caused by discharges of domestic, 
agricultural, and industrial effluents into the river 
Ling et al., 2016; Onisogen Simeon et al., 2019)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Similarly, for pH, the t-statistic was 0.4878, and the p
0.6591 (> 0.05), indicating no significant difference between the 
observed and standard values. Variations in pH can often be attributed 
to the dissolution of minerals and the influence of 
activities in the surrounding environment  
Chibsa et al., 2023; Komonweeraket et al., 2015)
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(1,111.11 mg/kg) and relatively lower in sediments, suggesting 
significant bioaccumulation. While Zn is essential, elevated levels can 
disrupt metabolic functions in aquatic life. Chromium (Cr) 
concentrations were more pronounced in sediments, with sample A 
recording 101.90 mg/kg, but were minimal in marine organisms, with 
CB showing only 2.45 mg/kg. This indicates limited bioavailability or 
efficient detoxification mechanisms in organisms. Manganese (Mn) 
was notably high in sediment sample A (2,976.93 mg/kg) and PF 
(1,549.46 mg/kg), suggesting its bioavailability and possible leaching 
from sources like fertilizers or mining operations. While Mn is an 
essential nutrient, its elevated levels raise concerns about potential 

The Figure 6 presents an analysis of the test results using 
test methods. The water quality parameters 

ith the guidelines set by the WHO, 
EPA, and NSDWQ (2007) standards. The Paired T-Test Analysis for 
Observed vs. Standard Values of Dissolved Oxygen (DO), pH, Total 
Dissolved Solids (TDS), and Conductivity is displayed in Figure 6. A 

.05 (95% confidence interval) was selected to 
assess whether statistically significant differences existed between the 
observed values and the established standards. For each water quality 

values were greater than 0.05, indicating no 
stically significant difference between the observed and standard 

values from the WHO, EPA, or NSDWQ. In the case of Dissolved 
0.8176, and the p-value was 0.4735 

(> 0.05), suggesting no significant difference between the observed 
(Awomeso et al., 2019; Vaage & Myrick, 2022). 

However, the lower DO levels observed downstream indicate 
potential pollution, likely caused by discharges of domestic, 
agricultural, and industrial effluents into the river (Ameta et al., 2023; 
Ling et al., 2016; Onisogen Simeon et al., 2019).  

statistic was 0.4878, and the p-value was 
0.6591 (> 0.05), indicating no significant difference between the 
observed and standard values. Variations in pH can often be attributed 
to the dissolution of minerals and the influence of anthropogenic 
activities in the surrounding environment  (Awomeso et al., 2019; 
Chibsa et al., 2023; Komonweeraket et al., 2015). For TDS, the t-
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statistic was -1.4697, and the p-value was 0.2380 (> 0.05), while for 
conductivity, the t-statistic was -0.9553, and the p-value was 0.4099 
(> 0.05), both indicating no significant differences between the 
observed and standard values. As none of the p-values were below the 
0.05 significance level, the null hypothesis (H0) could not be rejected 
for any of the water quality parameters, implying that the observed 
water quality parameters did not significantly differ from the 
recommended standards. Although some variations were observed, 
such as DO levels ranging from 6.2 mg/L to 9.2 mg/L, indicating 
differences in water quality across sites, and slightly elevated pH 
values at Ikoneto (Site 1), TDS and conductivity remained within 
acceptable limits. Additionally, the paired t-test analysis showed no 
significant difference between the observed water quality parameters 
and the recommended values by WHO, EPA, and NSDWQ, 
suggesting that the water quality of the Nwaniba River, based on 
these parameters, is generally within the acceptable range set by 
international standards. However, potential heavy metal 
contamination detected in sediment and organisms remains a concern. 
Additionally, variations in TDS and conductivity across the sampling 
sites, as well as seasonal fluctuations in temperature and DO levels, 
align with findings by Maity et al., (2022) and Ogwueleka, (2015), 
which suggest that solid waste disposal contributes to water pollution 
and influences these parameters. 
 

CONCLUSION 
 
The integration of machine learning models with traditional 
environmental assessments has proven effective in evaluating heavy 
metal contamination in the Nwaniba River. The study identified 
significant levels of Fe, Cu, Ni, Pb, Zn, Cr, and Mn in sediments and 
organisms, with bioaccumulation posing risks to the aquatic 
ecosystem and public health. Random Forest emerged as the best-
performing model, capturing 97% of the variance in the data and 
providing robust predictive capabilities for assessing contamination. 
Variations in water quality parameters and metal concentrations 
across the sampling sites reflect both natural geochemical processes 
and anthropogenic activities. While water quality parameters were 
generally within acceptable limits, the detection of toxic heavy metals 
in sediments and organisms underscores the urgency of implementing 
remediation measures. This research highlights the value of 
combining machine learning with environmental monitoring to 
enhance the understanding of pollution dynamics and support the 
development of targeted conservation strategies for fragile 
ecosystems like the Nwaniba River. 
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